0 Items
Select Page

References

There is no better testament to the quality of a product than its citation in a peer-reviewed scientific publication. We aim to collate all of the references that we’re aware of below, but if you know of any others please do let us know. If you publish your own work and include a reference to one of our products, we will be pleased to offer you a 25% discount on your next order – just contact us for details.

Ad-GFP (available on request)

Mlcochova, P. et al. (2017). DNA damage induced by topoisomerase inhibitors activates SAMHD1 and blocks HIV-1 infection of macrophages. EMBO J. Oct 30. pii: e201796880. PMID: 29084722

Mo, S. et al. (2015). Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. J Control Release. 210:10-8. PMID: 25975831

Ad-LUC (available on request)

Myers, R. et al. (2018). Ultrasound-mediated cavitation does not decrease the activity of small molecule, antibody or viral-based medicines. Int J Nanomedicine. Jan 10;13:337-349. PMID: 9391793

Sanders, T. et al. (2020). Investigating the Effect of Encapsulation Processing Parameters on the Viability of Therapeutic Viruses in Electrospraying. Pharmaceutics. Apr 24;12(4). pii: E388. PMID: 32344667

Ad5-MyoD (available on request)

Adkin, CF. et al. (2012). Multiple exon skipping strategies to by-pass dystrophin mutations. Neuromuscul Disord. Apr;22(4):297-305. PMID: 22182525

Aung-Htut, M. et al. (2020). Splice modulating antisense oligonucleotides restore some acidalpha-glucosidase activity in cells derived from patients with lateonset Pompe disease. Sci Rep. Apr 21;10(1):6702. PMID: 32317649.

Greer, K. et al. (2015). Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient. Mol Genet Genomic Med. 3(4):320-6. PMID: 26247048

Greer, KL. et al. (2014). Targeted exon skipping to correct exon duplications in the dystrophin gene. Mol Ther Nucleic Acids. Mar 18;3:e155. PMID: 24643206

Fletcher, S. et al. (2013). Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genomic Med. Sep;1(3):162-73. PMID: 24498612

Fletcher, S. et al. (2012). Targeted exon skipping to address “leaky” mutations in the dystrophin gene. Mol Ther Nucleic Acids. Oct 16;1:e48. PMID: 23344648

Toh, ZY. et al. (2016). Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies. PLoS One. Jan 8;11(1):e0145620. PMID: 26745801

Zaric, M. et al. (2017). Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release. Dec 28;268:166-175. PMID: 29056444

Adenovirus Contract Manufacturing

Bachy, V. et al. (2013). Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A. Feb 19;110(8):3041-6. PMID: 23386724

Becker, PD. et al. (2015). Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. Sep 8;33(37):4691-8. PMID: 25917679

O’Brien, LM. et al. (2014). Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse. Virology. Mar;452-453:324-33. PMID: 24461913

Zaric, M. et al. (2019) Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8+ effector recruitment to mucosal tissues.  Nat. Comms.  10:2214 

Adenoviruses 3, 5 and 11 (available on request)

Dyer, A. et al. (2016). Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators. Mol Ther Oncolytics. Dec 10;4:18-30. PMID: 28345021

Thoma, C. et al. (2013). Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: implications for ovarian cancer therapy. Virology. Dec;447(1-2):74-83. PMID: 24210101

Pertussis Toxin

Doronin, VB. et al. (2016). Changes in different parameters, lymphocyte proliferation and hematopoietic progenitor colony formation in EAE mice treated with myelin oligodendrocyte glycoprotein. J Cell Mol Med. Jan;20(1):81-94. PMID: 26493273

Salcedo-Rivillas, C. et al. (2014). Pertussis toxin improves immune responses to a combined pneumococcal antigen and leads to enhanced protection against Streptococcus pneumoniae. Clin Vaccine Immunol. Jul;21(7):972-81. PMID: 24807055

Sanchis, P. et al. (2020). Interleukin-6 Derived From the Central Nervous System May Influence the Pathogenesis of Experimental Autoimmune Encephalomyelitis in a Cell-Dependent Manner. Cells. Jan, 9(2). PMID: 32023844

CHIKV VLP

Dora, EG. (2019). An adjuvanted adenovirus 5-based vaccine elicits neutralizing antibodies and protects mice against chikungunya virus-induced footpad swelling. Vaccine. May, 37(24), 3146-3150. PMID: 31047675

Liu, JL. et al. (2019). Selection and Characterization of Protective Anti-Chikungunya Virus Single Domain Antibodies. Molecular Immunology. PMID: 30550981

Liu, JL. et al. (2018). Selection of Single-Domain Antibodies Towards Western Equine Encephalitis Virus. Antibodies. PMID: 3154489

CHIKV Envelope

Liu, JL. et al. (2018). Selection of Single-Domain Antibodies Towards Western Equine Encephalitis Virus. Antibodies.

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

CHIKV Antibodies

Pedraza-Escalona, M. et al. (2020). Isolation and characterization of high anity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. Research Square (preprint).

Tuekprakhon, A. (2018). Broad-Spectrum Monoclonal Antibodies Against Chikungunya Virus Structural Proteins: Promising Candidates For Antibody-Based Rapid Diagnostic Test Development. PLOS One. PMID: 30557365

C. diff Toxin A and B

Arruda, PHE. et al. (2014). Clostridium Difficile Infection in Neonatal Piglets: Pathogenesis, Risk Factors and Prevention. Iowa State University Digital Repository.

Banz, A. et al. (2018). Sensitivity of Single-Molecule Array Assays For Detection of Clostridium Difficile Toxins In Comparison To Conventional Laboratory Testing Algorithms. Journal of Clinical Microbiology. PMID: 29898996

Banz, A. et al. (2016). Design of Two-Plex Assay For Detection of Clostridium Difficile Toxins A And B. bioMerieux.

Banz, A. et al. (2015). Development of an Ultra-Sensitive Clostridium Difficile Toxins A and B Assay Using Digital Technology. bioMerieux.

Bartolome, A. et al. (2018). Evaluation of the Singulex Clarity C. diff Toxins A/B Assay, Currently in Development of Ultrasensitive Detection of Clostridium difficile Toxins. Singulex.

Bézay, N. et al. (2016). Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers. Vaccine. May 17;34(23):2585-92. PMID: 27079932

Collery, MM. (2016). What’s a SNP Between Friends: The Influence of Single Nucleotide Polymorphisms on Virulence and Phenotypes of Clostridium Difficile Strain 630 and Derivatives. Virulence. PMID: 27652799 

Cox, MA. et al. (2017). Assays for Measuring C. difficile Toxin Activity and Inhibition in Mammalian Cells. InTech Open. Chapter 5.

Dhillon, HS. et al. (2016). Homogeneous and digital proximity ligation assays for the detection of Clostridium difficile toxins A and B. Biomol Detect Quantif. Aug 31;10:2-8. PMID: 27990343

Dhillon, HS. et al. (2017). Development of Novel Molecular Methods for the Detection of C. Difficile Infections. Anglia Ruskin University.

Huang, JH. et al. (2015). Recombinant lipoprotein-based vaccine candidates against C. difficile infections. J Biomed Sci. Aug 7;22:65. PMID: 26245825

Hernandez, LD. et al. (2017). Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol. Apr 7;429(7):1030-1044. PMID: 28232034

Katzenbach, P. et al. Single Molecule Counting Technology for Ultrasensitive Quantification of Clostridium difficile Toxins A and B. Singulex.

Kelly, CP. et al. (2019). Host Immune Markers Distinguish Clostridioides Difficile Infection From Asymptomatic Carriage and Non-C. Difficile Diarrhea. Clin Infect Dis. Apr. PMID: 31211839

Kuehne, SA. et al. (2017). Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. J Antimicrob Chemother. Dec 15. doi: 10.1093/jac/dkx486. [Epub ahead of print]. PMID: 29253242

Orth, P. et al. (2014). Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem. Jun 27;289(26):18008-21. PMID: 24821719

Sandlund, J. et al. (2018). Ultrasensitive Detection of Clostridoides difficile Toxins A and B by use of Automated Single-Molecule Counting Technology. Journal of Clinical Microbiology. PMID: 30158195

Tam, S. (2018). Evaluation of an Ultrasensitive Immunoassay, Currently in Development for the Singulex Clarity System, for the Detection of Clostridium difficile Toxins A and B. Singulex.

Zhao, X. et al. (2016). Sensitive assays enable detection of serum IgG antibodies against Clostridium difficile toxin A and toxin B in healthy subjects and patients with Clostridium difficile infection. Bioanalysis. Apr;8(7):611-23. PMID: 26964649

C. diff Toxoid A and B

Huang, JH. et al. (2015). Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A. PLoS One. Aug 13;10(8):e0135045. PMID: 26271033

C. diff Toxin A (Ribotype 027)

Tian, JH. et al. (2017). Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models. Vaccine. Jul 24;35(33):4079-4087. PMID: 28669616

C. diff Toxin A (Ribotype 078)

Enany, S. (2017). Clostridium Difficile: A Comprehensive Overview. Science.

Secore, S. et al. (2017). Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains. PLoS One. Jan26;12(1):e0170640. PMID: 28125650

SARS-CoV-2 Spike Subunit 1 (S1)

Andriuta, D. et al. (2020). COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF.  Journal of Neurology. 2020 Jun 11 : 1–2. PMID: 32529577.

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Doremalen, NV. et al. (2020). ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv (preprint).

Emanuele, A. et al. (2020). Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients. bioRxiv (preprint).

Karp, DG. et al. (2020). A serological assay to detect SARS-CoV-2 antibodies in at-home collected fingerprick dried blood spots. medRxiv (preprint).

Randad, PR. et al. (2020). COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. medRxiv (preprint).

SARS-CoV-2 Spike Subunit 2 (S2)

Andriuta, D. et al. (2020). COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF.  Journal of Neurology. 2020 Jun 11 : 1–2. PMID: 32529577.

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Doremalen, NV. et al. (2020). ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv (preprint).

Emanuele, A. et al. (2020). Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients. bioRxiv (preprint).

SARS-CoV-2 Spike Receptor-Binding Domain

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

SARS-CoV-2 Nucleoprotein

Andriuta, D. et al. (2020). COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF.  Journal of Neurology. 2020 Jun 11 : 1–2. PMID: 32529577.

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Gn protein

Golden, JW. et al. (2019). GP38-Targeting Monoclonal Antibodies Protect Adult Mice Against Lethal Crimean-Congo Hemorrhagic Fever Virus Infection. Science Advances.

Darci, RS. et al. (2019). Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathogens. Sep 26;15(9). PMID: 31557262

Nucleoprotein

Golden, JW. et al. (2019). GP38-Targeting Monoclonal Antibodies Protect Adult Mice Against Lethal Crimean-Congo Hemorrhagic Fever Virus Infection. Science Advances. PMID: 31309159.

CMV CL

Albayati, Z. et al. (2017). The Influence of Cytomegalovirus on Expression of HLA-G and its Ligand KIR2DL4 by Human Peripheral Blood Leucocyte Subsets. Scand J Immunol. Nov;86(5):396-407. PMID: 28817184

Huang, TS. et al. (2014). No evidence of association between human cytomegalovirus infection and papillary thyroid cancer. World J Surg Oncol. Feb 21;12:41. PMID: 24559116

Nabatanzi, R. et al. (2014). Low antigen-specific CD4 T-cell immune responses despite normal absolute CD4 counts after long-term antiretroviral therapy an African cohort. Immunol Lett. Dec;162(2 Pt B):264-72. PMID: 25263953

CMV Pentamer

John, S. et al. (2018). Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018 Mar 14;36(12):1689-1699. PMID: 29456015

Liu, Y. et al. (2020). A Replication-Defective Human Cytomegalovirus Vaccine Elicits Humoral Immune Responses Analogous to Those with Natural Infection. J Virol. 2019 Nov 13;93(23). pii: e00747-19. PMID: 31511385

Schampera, MS. et al. (2019). Role of Pentamer Complex-Specific and IgG Subclass 3 Antibodies in HCMV Hyperimmunoglobulin and Standard Intravenous IgG Preparations. Med Microbiol Immunol. Feb, 208(1), 69-80. PMID: 30203132

CMV Extract

Almehmadi, MM. (2014). CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients. University of Liverpool.

CMV Antibodies

Gogesch, P. et al. (2019). Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel). Sep, 7(3), 104. PMID: 31480520

NS1 Proteins (All Serotypes)

Barban, V. et al. (2018). Improvement of the Dengue Virus (DENV) Nonhuman Primate Model via a Reverse Translational Approach Based on Dengue Vaccine Clinical Efficacy Data against DENV-2 and -4. Journal of Virology.

Beatty, PR. et al. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med. Sep 9;7(304):304ra141. PMID: 26355030

Bosch, I. et al. (2017). Rapid Antigen Tests for Dengue Virus Serotypes and Zika Virus In Patient Serum. Science Translational Medicine. PMID: 28954927

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Castanha, PMS. et al. (2019). Perinatal Analyses of Zika- and Dengue Virus-Specific Neutralizing Antibodies: A Microcephaly Case-Control Study in an Area of High Dengue Endemicity in Brazil. PLOS Neglected Tropical Diseases. PMID: 30856223

Espinosa, DA. et al. (2019). Cyclic Dinucleotide-Adjuvanted Dengue Virus Nonstructural Protein 1 Induces Protective Antibody and T Cell Responses. The Journal of Immunology. PMID: 30642979

Gelanew, T. et al. (2015). Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. Sep 15;222:214-23. PMID: 26070890

Glasner, DR. et al. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. Nov 9;13(11):e1006673. PMID: 29121099

Goncalves, BDS. et al. (2019). Dynamics of Nonstructural glycoprotein-1 in Dengue Patients Presenting With Different Clinical Manifestations From 1986 to 2012 in Rio De Janeiro, Brazil. J Med Virol. Apr, 91(4), 555-563. PMID: 30411369

Montes-Grajales, D. et al. (2020). In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res. Jan;173:104668. PMID: 31786251

Nascimento, EJM. et al. (2018). Development of antibody biomarkers of long term and recent dengue virus infections. J Virol Methods. Apr 21;257:62-68. PMID: 29684416

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. Mar 19;257:48-57. PMID: 2956751

Needham, JW. et al. (2019). Interferometric Reflectance Imaging Sensor (IRIS) for Molecular Kinetics With a Low-Cost, Disposable Fluidic Cartridge. Methods Mol Biol. 2027, 15-28. PMID: 31309469

O’Donnell, K. (2020). Avian IgY As An Immunotherapy For Flaviviral Infections. University of North Dakota. Jun 12. (PhD thesis).

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. Jul 14;12(7):e1005738. PMID: 27416066

Rönnberg, B. et al. (2017). Compensating for cross-reactions using avidity and computation in a suspension multiplex immunoassay for serotyping of Zika versus other flavivirus infections. Med Microbiol Immunol. Oct, 206(5):383-401. PMID: 28852878

Rogers, TF. et al. (2017). Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors. Sci Immunol. Aug 18;2(14). PMID: 28821561

Sharma, M. et al. (2019). Magnitude and Functionality of the NS1-Specific Antibody Response Elicited by a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis. Feb 19. PMID: 30783676

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706 

Tedder, RS. et al. (2019). Modulated Zika virus NS1 conjugate offers advantages for accurate detection of Zika virus specific antibody in double antigen binding and Ig capture enzyme immunoassays, PLoS One. Aug, 14(8). PMID: 31374094

Tran, TV. et al. (2019). Development of a Highly Sensitive Magneto-Enzyme Lateral Flow Immunoassay for Dengue NS1 Detection. PeerJ. Sep, 7. PMID: 31579630

Wang, C. et al. (2019). Endocytosis of Flavivirus NS1 Is Required for NS1-mediated Endothelial Hyperpermeability and Is Abolished by a Single N-glycosylation Site Mutation. PLoS Pathog. Jul, 15(7). PMCID: PMC6687192

Dengue Virus Serotype 1 NS1 Protein (DENV1-NS1)

Badolato-Corrêa, J. et al. (2018) Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection. Immun Inflamm Dis. Jun;6(2):194-206. PMID: 29282904

Nunes, PCG. et al. (2018). NS1 Antigenemia and Viraemia Load: Potential Markers of Progression to Dengue Fatal Outcome. Viruses. PMID: 29903980

Jayathilaka, D. et al. (2018). Role of NS1 Antibodies in the Pathogenesis of Acute Secondary Dengue Infection. Nature Communications. PMID: 30531923

Tsai, W-Y. et al. (2018). Use of Urea Wash ELISA to Distinguish Dengue Virus Infections. CDC.

Tsai, W-Y. et al. (2017). Distinguishing Secondary Dengue Virus Infection from Zika Virus Infection with Previous Dengue by a Combination of 3 Simple Serological Tools. Clinical Infectious Diseases. PMID: 29020159 

Dengue Virus Serotype 2 NS1 Protein (DENV2-NS1)

Chen, HR. et al. (2016). Dengue Virus Non-structural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis. Jul 13;10(7):e0004828. PMID: 27409803

Chen, HR. et al. (2018). Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog. Apr 27;14(4):e1007033. PMID: 29702687

Cheung, Y. et al. (2020). A Critical Role for Perivascular Cells in Amplifying Viral Haemorrhage Induced by Dengue Virus Non-Structural Protein 1. BioRxiv. Feb 14. (Preprint).

Conde, JN. et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol. Oct 14;90(21):9570-9581. PMID: 27512066

Garcia-Oliva, C. et al. (2020). Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry. Feb, 26(7), 1588-1596. PMID: 31644824

Jayathilaka, D. et al. (2018). Role of NS1 Antibodies in the Pathogenesis of Acute Secondary Dengue Infection. Nature Communications. PMID: 30531923

Lee, P. et al. (2020). Relative contribution of non-structural protein 1 in dengue pathogenesis. BioRxiv. Feb 02. (Preprint).

Mani, S. et al. (2018). Serological Cross Reactivity between Zika and Dengue Viruses in Experimentally Infected Monkeys. Virologica Sinica. PMID: 30155852

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Tam, JO. et al. (2017). A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. J Immunoassay Immunochem. 38(4):355-377. PMID: 27982728

Dengue Virus Serotype 4 NS1 Protein (DENV4-NS1)

Heringer, M. et al. (2017). Dengue type 4 in Rio de Janeiro, Brazil: case characterization following its introduction in an endemic region. BMC Infect Dis. Jun 9;17(1):410. PMID: 28599640

Dengue Envelope Proteins

Durham, N. et al. (2019). Functional characterization and lineage analysis of broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. BioRxiv. Oct 02. (Preprint).

Rogers, TF. et al. (2017). Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors. Sci Immunol. Aug 18;2(14). PMID: 28821561

Dengue Virus-Like Particles

Awadalkareem, A. et al. (2018). Multiplexed FluroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. The Journal of Immunology. PMID: 30413671

Deliot, A. et al. (2017) Visualization of Dengue virus like particles interacting with antibodies. The 16th European Microscopy Congress, Lyon, France.

Goldman, ER. et al. (2017). Bglbrick strategy for the construction of single domain antibody fusions. Heliyon. Dec 28;3(12):e00474. PMID: 29322100

Metz, SW. et al. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J. 2018 Apr 2;15(1):60. PMID: 29609659

Lecouturier, V. et al. (2018). Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes. Vaccine. Apr 26. pii: S0264-410X(18)30562-0. PMID: 29706291

Sanchez-Vargas, LA. et al. (2019). Longitudinal Analysis of Memory B and T Cell Responses to Dengue Virus in a 5-Year Prospective Cohort Study in Thailand. Front Immunol. Jun, 10, 1359. PMID: 31263466

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

Dengue Virus Antibodies

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

GP1

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

Misc.

Mahari, S. et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. Apr 29. (Preprint).

Misc.

Mahari, S. et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. Apr 29. (Preprint).

JEV NS1

Mahari, S. et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. Apr 29. (Preprint).

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

JEV Antibodies

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

LASV Nucleoprotein

Kennedy, EM. et al. (2019). A Vaccine Based on Recombinant Modified Vaccinia Ankara Containing the Nucleoprotein From Lassa Virus Protects Against Disease Progression in a Guinea Pig Model. Vaccine, 37(36), 5404-5413. PMID: 31331770

Sheep HRP Antibody

Gogesch, P. et al. (2019). Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel). Sep, 7(3), 104. PMID: 31480520

TBEV NS1

Albinsson, B. (2018). Distinction Between Serological Responses Following Tick-Borne Encephalitis Virus (TBEV) Infection Vs Vaccination, Sweden 2017. Eurosurveillance. PMID: 29386094

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Girl, P. et al. (2020). Tick-borne Encephalitis Virus (TBEV): Non-Structural Protein (NS1) IgG ELISA Differentiating Infection vs. Vaccination Antibody Responses. J Clin Microbiol. Jan. PMID: 31969423

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. Mar 19;257:48-57. PMID: 2956751

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Salat, J. et al. (2020). Tick-Borne Encephalitis Virus Vaccines Contain Non-Structural Protein 1 Antigen and may Elicit NS1-Specific Antibody Responses in Vaccinated Individuals. Vaccines (Basel). Feb 12;8(1). pii: E81. PMID: 32059489

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Tagliabue, G. et al. (2017). A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology. Biochem Biophys Res Commun. Oct 28;492(4):558-564. PMID: 28501619

Trichomonas vaginalis antigen

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563

Usutu Virus NS1 Protein

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Saiz, J-C. and Blazquez, A-B. (2017). Usutu Virus: Current Knowledge and Future Perspectives. Virus Adaptation and Treatment.

WNV NS1 Protein

Beatty, PR. et al. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med. Sep 9;7(304):304ra141. PMID: 26355030

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Conde, JN. et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol. Oct 14;90(21):9570-9581. PMID: 27512066

Glasner, DR. et al. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. Nov 9;13(11):e1006673. PMID: 29121099

Gelanew, T. et al. (2015). Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. Sep 15;222:214-23. PMID: 26070890

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. Jul 14;12(7):e1005738. PMID: 27416066

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Tagliabue, G. et al. (2017). A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology. Biochem Biophys Res Commun. Oct 28;492(4):558-564. PMID: 28501619

WNV Antibodies

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

YFV NS1 Protein

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Gelanew, T. et al. (2015). Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. Sep 15;222:214-23. PMID: 26070890

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Yen, CW. et al. (2015). Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip.7;15(7):1638-41. PMID: 25672590

ZIKV Envelope Protein

Fowler, AM. et al. (2018). Maternally Acquired Zika Antibodies Enhance Dengue Disease Severity in Mice. Cell Host & Microbe. PMID: 30439343

Salazar, V. et al. (2019). Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect Against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports. PMID: 30726740

Wen, J. et al. (2017). Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat Commun. Nov 13;8(1):1459. PMID: 29129917

ZIKV NS1 Protein

Afsahi, S. et al. (2018). Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron. 100:85-88. PMID: 28865242

Balmaseda, A. et al. (2017). Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc Natl Acad Sci U S A. Aug 1;114(31):8384-8389. PMID: 28716913

Balmaseda, A. et al. (2018). Comparison of four serological methods and two RT-PCR assays for diagnosis and surveillance of Zika. J Clin Microbiol. Jan 5. pii: JCM.01785-17. doi: 10.1128/JCM.01785-17. [Epub ahead of print]. PMID: 29305550

Bedin, F. et al. (2017). Paper-based point-of-care testing for cost-effective diagnosis of acute flavivirus infections. J Med Virol. Sep;89(9):1520-1527. PMID: 28295400

Bosch, I. et al. (2017). Rapid Antigen Tests for Dengue Virus Serotypes and Zika Virus In Patient Serum. Science Translational Medicine. PMID: 28954927

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Chao, C-H. et al. (2019). Dengue Virus Nonstructural Protein 1 Activate Platelets via Toll-Like Receptor 4, Leading to Thrombocytopenia and Hemorrhage. PLOS Pathogens. PMID: 31009511

Conde, JN. et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol. Oct 14;90(21):9570-9581. PMID: 27512066

Henry, P-G. et al. (2020). Zika Virus Nonstructural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas. J Infect Dis. Jan, 221(2), 313-324. PMID: 31250000

Kareinen, L. et al. (2019). Immunoassay for serodiagnosis of Zika virus infection based on time-resolved Förster resonance energy transfer. PLoS One. Jul, 14(7). PMID: 31335898

Lecouturier, V. et al. (2019). Immunogenicity and Protection Conferred by an Optimized Purified Inactivated Zika Vaccine in Mice. Vaccine. May, 37(2), 2679-2686. PMID: 30967310

Lecouturier, V. et al. (2020). An optimized purified inactivated Zika vaccine provides sustained immunogenicity and protection in cynomolgus macaques. NPJ Vaccines. Mar 12;5:19. PMID: 32194996

Limonta, D. et al. (2018). Human Fetal Astrocytes Infected with Zika Virus Exhibit Delayed Apoptosis and Resistance Interferon: Implications for Persistance. Viruses. PMID: 30453621

Michelson, Y. et al. (2019). Highly Sensitive and Specific Zika Virus Serological Assays Using a Magnetic Modulation Biosensing System. J Infect Dis. Mar, 219(7), 1035-1043. PMID: 30335151

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. Mar 19;257:48-57. PMID: 2956751

Nascimento, EJM. et al. (2019). Use of a Blockade-of-Binding ELISA and Microneutralization Assay to Evaluate Zika Virus Serostatus in Dengue-Endemic Areas. Am J Trop Med Hyd. Sep 101(3);708-715. PMC6726926

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Puerta-Guardo, et al. (2020). Zika Virus Nonstructural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas. J Infect Dis. Jan 2;221(2):313-324. PMID: 31250000

Rodriguez-Barraquer et al. (2019). Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science. Feb 363(6427);607-610. PMID: 30733412

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Theillet, G. et al. (2018). Laser-cut paper-based device for the detection of dengue non-structural NS1 protein and specific IgM in human samples. Arch Virol. Mar 10. doi: 10.1007/s00705-018-3776-z. [Epub ahead of print] PMID: 29525973

Whitehead and Pierson (2019). Effects of Dengue Immunity on Zika Virus Infection. Nature News and Views. Nature 567, 467-468 (2019).

Zhang, B. et al. (2017). Diagnosis of Zika virus infection on a nanotechnology platform. Nat Med. May;23(5):548-550. PMID: 28263312

ZIKV Lysate

Martinez-Sobrido, L. and Toral, FA. (2019). New Advances on Zika Virus Research. Viruses. PMID: 30875715

Rayner, JO. et al. (2018). Comparative Pathogenesis of Asian and African-Lineage Zika Virus in Indian Rhesus Macaque’s and Development of Non-Human Primate Model Suitable for the Evaluation of New Drugs and Vaccines. Viruses. PMID: 29723973

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

ZIKV VLPs

Awadalkareem, A. et al. (2018). Multiplexed FluroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. The Journal of Immunology. PMID: 30413671

Collins, MH. et al. (2019). Human Antibody Response to Zika Targets Type-Specific Quaternary Structure Epitopes. JCI Insight. PMID: 30996133

Lima, TM. et al. (2019). Purification of Flavivirus VLPs by a Two-Step Chomatographic Process. Vaccine. Nov, 37(47), 7061-7069. PMID: 31201056

ZIKV Antibodies

Michelson, Y. et al. (2019). Highly Sensitive and Specific Zika Virus Serological Assays Using a Magnetic Modulation Biosensing System. J Infect Dis. Mar, 219(7), 1035-1043. PMID: 30335151

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

4 + 13 =

Live Customer Feedback

Join our mailing list

* indicates required