The Native Antigen Company is part of LGC Clinical Diagnostics - Learn More

0 Items
Select Page

References

There is no better testament to the quality of a product than its citation in a peer-reviewed scientific publication. We aim to collate all of the references that we’re aware of below, but if you know of any others please do let us know. If you publish your own work and include a reference to one of our products, we will be pleased to offer you a 25% discount on your next order – just contact us for details.
Ad-GFP (available on request)
Mlcochova, P. et al. (2017). DNA damage induced by topoisomerase inhibitors activates SAMHD1 and blocks HIV-1 infection of macrophages. EMBO J. Oct 30. pii: e201796880. PMID: 29084722

Mo, S. et al. (2015). Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. J Control Release. 210:10-8. PMID: 25975831

Ad-LUC (available on request)
Myers, R. et al. (2018). Ultrasound-mediated cavitation does not decrease the activity of small molecule, antibody or viral-based medicines. Int J Nanomedicine. Jan 10;13:337-349. PMID: 9391793

Sanders, T. et al. (2020). Investigating the Effect of Encapsulation Processing Parameters on the Viability of Therapeutic Viruses in Electrospraying. Pharmaceutics. Apr 24;12(4). pii: E388. PMID: 32344667

Ad5-MyoD (available on request)
Adkin, CF. et al. (2012). Multiple exon skipping strategies to by-pass dystrophin mutations. Neuromuscul Disord. Apr;22(4):297-305. PMID: 22182525

Aung-Htut, M. et al. (2020). Splice modulating antisense oligonucleotides restore some acidalpha-glucosidase activity in cells derived from patients with lateonset Pompe disease. Sci Rep. Apr 21;10(1):6702. PMID: 32317649.

Greer, K. et al. (2015). Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient. Mol Genet Genomic Med. 3(4):320-6. PMID: 26247048

Greer, KL. et al. (2014). Targeted exon skipping to correct exon duplications in the dystrophin gene. Mol Ther Nucleic Acids. Mar 18;3:e155. PMID: 24643206

Fletcher, S. et al. (2013). Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genomic Med. Sep;1(3):162-73. PMID: 24498612

Fletcher, S. et al. (2012). Targeted exon skipping to address “leaky” mutations in the dystrophin gene. Mol Ther Nucleic Acids. Oct 16;1:e48. PMID: 23344648

Toh, ZY. et al. (2016). Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies. PLoS One. Jan 8;11(1):e0145620. PMID: 26745801

Zaric, M. et al. (2017). Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release. Dec 28;268:166-175. PMID: 29056444

 

Adenovirus Contract Manufacturing
Bachy, V. et al. (2013). Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A. Feb 19;110(8):3041-6. PMID: 23386724

Becker, PD. et al. (2015). Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. Vaccine. Sep 8;33(37):4691-8. PMID: 25917679

O’Brien, LM. et al. (2014). Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse. Virology. Mar;452-453:324-33. PMID: 24461913

Zaric, M. et al. (2019) Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8+ effector recruitment to mucosal tissues.  Nat. Comms.  10:2214

Adenoviruses 3, 5 and 11 (available on request)
Dyer, A. et al. (2016). Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators. Mol Ther Oncolytics. Dec 10;4:18-30. PMID: 28345021

Thoma, C. et al. (2013). Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: implications for ovarian cancer therapy. Virology. Dec;447(1-2):74-83. PMID: 24210101

Adenovirus 40
Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.
Pertussis Toxin
Doronin, VB. et al. (2016). Changes in different parameters, lymphocyte proliferation and hematopoietic progenitor colony formation in EAE mice treated with myelin oligodendrocyte glycoprotein. J Cell Mol Med. Jan;20(1):81-94. PMID: 26493273

Salcedo-Rivillas, C. et al. (2014). Pertussis toxin improves immune responses to a combined pneumococcal antigen and leads to enhanced protection against Streptococcus pneumoniae. Clin Vaccine Immunol. Jul;21(7):972-81. PMID: 24807055

Sanchis, P. et al. (2020). Interleukin-6 Derived From the Central Nervous System May Influence the Pathogenesis of Experimental Autoimmune Encephalomyelitis in a Cell-Dependent Manner. Cells. Jan, 9(2). PMID: 32023844

Tolmacheva, AS. et al. (2020). Increase in Autoantibodies-Abzymes with Peroxidase and Oxidoreductase Activities in Experimental Autoimmune Encephalomyelitis Mice during the Development of EAE Pathology. Molecules 2021, 26(7), 2077.

Urusov, A.E. et al. (2023) “Autoantibody–Abzymes with catalase activity in experimental autoimmune encephalomyelitis mice,” Molecules, 28(3), p. 1330.

Filamentous Haemagglutinin
Pathirana, J. et al. (2021). Effect of cytomegalovirus infection on humoral immune responses to select vaccines administered during infancy. Vaccine. 2021 Aug 9;39(34):4793-4799. PMID: 34275675.

Dowling, D.J. et al. (2022) “Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to dtap vaccination,” Scientific Reports, 12(1)

C.trachomatis

C. trachomatis
Ortiz, B. et al. (2022) “Chlamydia trachomatis antigen induces tlr4‐tab1‐mediated inflammation, but not cell death, in maternal decidua cells,” American Journal of Reproductive Immunology, 89(3). Available at: https://doi.org/10.1111/aji.13664
CHIKV VLP
Awadalkareem, A. (2021). Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. PMID: 33539255.

Awadalkareem, A. (2021). A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. PMID: 33597526.

Dora, EG. (2019). An adjuvanted adenovirus 5-based vaccine elicits neutralizing antibodies and protects mice against chikungunya virus-induced footpad swelling. Vaccine. May, 37(24), 3146-3150. PMID: 31047675

Liu, JL. et al. (2020). Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Front Med (Lausanne). Jan 28;8:626028. PMID: 33585527

Liu, JL. et al. (2019). Selection and Characterization of Protective Anti-Chikungunya Virus Single Domain Antibodies. Molecular Immunology. PMID: 30550981

Liu, JL. et al. (2018). Selection of Single-Domain Antibodies Towards Western Equine Encephalitis Virus. Antibodies. PMID: 3154489

CHIKV Capsid
Troost-Kind, B. et al. (2021). Tomatidine reduces Chikungunya virus progeny release by controlling viral protein expression. PMID: 34762680.
CHIKV Envelope
Islamuddin, M. et al. (2021). Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1H)-one (QVIR) Targeting nsP2 and E2 Proteins. ACS.

Liu, JL. et al. (2020). Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Front Med (Lausanne). Jan 28;8:626028. PMID: 33585527

Liu, JL. et al. (2018). Selection of Single-Domain Antibodies Towards Western Equine Encephalitis Virus. Antibodies.

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

Ushijima, Y. et al. (2021). Surveillance of the major pathogenic arboviruses of public health concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus infections. BMC Infect Dis. 2021 Mar 17;21(1):265. PMID: 33731022.

CHIKV Lysate
Ganganboina, AB. et al. (2021). Cargo encapsulated hepatitis E virus-like particles for anti-HEV antibody detection. Biosens Bioelectron. 2021 Aug 1;185:113261. PMID: 33962156

Nasrin, F. et al. (2021). Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. Biosensors (Basel). 2021 Oct 7;11(10):376. PMID: 34677332

CHIKV Antibodies
Ganganboina, AK. et al. (2021). Cargo encapsulated Hepatitis E virus-like particles for anti-HEV antibody detection. Biosensors and Bioelectronics. 2021 Apr.

Gaurav, N. et al. (2021). Role of nuclear localization signals in the DNA delivery function of Chikungunya virus capsid protein. Arch Biochem Biophys. 2021 Mar 15;702:108822. PMID: 33722536.

Islamuddin, M. et al. (2021). Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1H)-one (QVIR) Targeting nsP2 and E2 Proteins. ACS Omega.

Pedraza-Escalona, M. et al. (2020). Isolation and characterization of high anity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. Research Square (preprint).

Tuekprakhon, A. (2018). Broad-Spectrum Monoclonal Antibodies Against Chikungunya Virus Structural Proteins: Promising Candidates For Antibody-Based Rapid Diagnostic Test Development. PLOS One. PMID: 30557365

Lin, H.-C. et al. (2023) “Development of a novel chikungunya virus-like replicon particle for rapid quantification and screening of neutralizing antibodies and antivirals,” Microbiology Spectrum.

C. diff Toxin A and B
Arruda, PHE. et al. (2014). Clostridium Difficile Infection in Neonatal Piglets: Pathogenesis, Risk Factors and Prevention. Iowa State University Digital Repository.

Banz, A. et al. (2018). Sensitivity of Single-Molecule Array Assays For Detection of Clostridium Difficile Toxins In Comparison To Conventional Laboratory Testing Algorithms. Journal of Clinical Microbiology. PMID: 29898996

Banz, A. et al. (2016). Design of Two-Plex Assay For Detection of Clostridium Difficile Toxins A And B. bioMerieux.

Banz, A. et al. (2015). Development of an Ultra-Sensitive Clostridium Difficile Toxins A and B Assay Using Digital Technology. bioMerieux.

Bartolome, A. et al. (2018). Evaluation of the Singulex Clarity C. diff Toxins A/B Assay, Currently in Development of Ultrasensitive Detection of Clostridium difficile Toxins. Singulex.

Bézay, N. et al. (2016). Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers. Vaccine. May 17;34(23):2585-92. PMID: 27079932

Collery, MM. (2016). What’s a SNP Between Friends: The Influence of Single Nucleotide Polymorphisms on Virulence and Phenotypes of Clostridium Difficile Strain 630 and Derivatives. Virulence. PMID: 27652799 

Cox, MA. et al. (2017). Assays for Measuring C. difficile Toxin Activity and Inhibition in Mammalian Cells. InTech Open. Chapter 5.

Dhillon, HS. et al. (2016). Homogeneous and digital proximity ligation assays for the detection of Clostridium difficile toxins A and B. Biomol Detect Quantif. Aug 31;10:2-8. PMID: 27990343

Dhillon, HS. et al. (2017). Development of Novel Molecular Methods for the Detection of C. Difficile Infections. Anglia Ruskin University.

Huang, JH. et al. (2015). Recombinant lipoprotein-based vaccine candidates against C. difficile infections. J Biomed Sci. Aug 7;22:65. PMID: 26245825

Hernandez, LD. et al. (2017). Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol. Apr 7;429(7):1030-1044. PMID: 28232034

Katzenbach, P. et al. Single Molecule Counting Technology for Ultrasensitive Quantification of Clostridium difficile Toxins A and B. Singulex.

Kelly, CP. et al. (2019). Host Immune Markers Distinguish Clostridioides Difficile Infection From Asymptomatic Carriage and Non-C. Difficile Diarrhea. Clin Infect Dis. Apr. PMID: 31211839

Kuehne, SA. et al. (2017). Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. J Antimicrob Chemother. Dec 15. doi: 10.1093/jac/dkx486. [Epub ahead of print]. PMID: 29253242

Orth, P. et al. (2014). Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem. Jun 27;289(26):18008-21. PMID: 24821719

Rantfler, C. et al. (2021). Binding and neutralization of C. difficile toxins A and B by purified clinoptilolite-tuff. PLoS One. 2021 May 27;16(5):e0252211. PMID: 34043688.

Sandlund, J. et al. (2018). Ultrasensitive Detection of Clostridoides difficile Toxins A and B by use of Automated Single-Molecule Counting Technology. Journal of Clinical Microbiology. PMID: 30158195

Sprague, R. et al. (2020). Absence of Toxemia in Clostridioides difficile Infection: Results from Ultrasensitive Toxin Assay of Serum. Digestive Diseases and Sciences. PMID: 33164145

Tam, S. (2018). Evaluation of an Ultrasensitive Immunoassay, Currently in Development for the Singulex Clarity System, for the Detection of Clostridium difficile Toxins A and B. Singulex.

Zhao, X. et al. (2016). Sensitive assays enable detection of serum IgG antibodies against Clostridium difficile toxin A and toxin B in healthy subjects and patients with Clostridium difficile infection. Bioanalysis. Apr;8(7):611-23. PMID: 26964649

C. diff Toxoid A and B
Anwar, S. et al. (2020). Development and verification of an enzyme-linked immunosorbent assay for the quantification of toxoid A and toxoid B from Clostridioides difficile. J Immunol Methods. 2021 Jan;488:112917. PMID: 33221460

Huang, JH. et al. (2015). Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A. PLoS One. Aug 13;10(8):e0135045. PMID: 26271033

Matchett, WE. et al. (2020). A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines. Aug 22;8(3):470. PMID: 32842679

C. diff Toxin A (Ribotype 027)
Tian, JH. et al. (2017). Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models. Vaccine. Jul 24;35(33):4079-4087. PMID: 28669616
C. diff Toxin A (Ribotype 078)

Enany, S. (2017). Clostridium Difficile: A Comprehensive Overview. Science.

Secore, S. et al. (2017). Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains. PLoS One. Jan26;12(1):e0170640. PMID: 28125650

C. diff Toxin B Antibodies

Karyl, C. et al. (2021). Colonisation Factor CD0873, an Attractive Oral Vaccine Candidate against Clostridioides difficile. Microorganisms. 2021 Feb 2;9(2):306. PMID: 33540694.

Hughes, J. et al. (2022) “Towards development of a non-toxigenic clostridioides difficile oral spore vaccine against toxigenic C. difficile,” Pharmaceutics, 14(5), p. 1086.

SARS-CoV-2 Spike Subunit 1 (S1)
Andreano, E. et al. (2020). Extremely potent human monoclonal antibodies from convalescent Covid-19 patients. bioRxiv (preprint).

Andriuta, D. et al. (2020). COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF. Journal of Neurology. 2020 Jun 11 : 1–2. PMID: 32529577.

Artman, D. et al. (2021). Avian antibodies (IgY) targeting spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit receptor binding and viral replication. PLoS One. 2021 May 28;16(5):e0252399. PMID: 34048457.

Auerswald, H. et al. (2022) “Rapid generation of in-house serological assays is comparable to commercial kits critical for early response to pandemics: A case with SARS-COV-2,” Frontiers in Medicine, 9.

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Brockbank, SMV. et al, (2021). SARS-CoV-2 comprehensive receptor profiling: mechanistic insight to drive new therapeutic
strategies. bioRxiv (preprint).

Casswell, S. et al. (2021). COVID-19 Antibody Testing of Patients Admitted to the ICU by a Novel, Point-of-Care Assay, and the Relationship to Survival. Research Square (preprint).

Danh, K. et al. (2020). Detection of SARS-CoV-2 neutralizing antibodies with a cell-free PCR assay. medRxiv (preprint).

Danh, K. et al. (2022) “Detection of neutralizing antibodies against multiple SARS-COV-2 strains in dried blood spots using cell-free PCR,” Nature Communications, 13(1).

Davies, SP. et al. (2021). The hyperlipidaemic drug fenofibrate significantly reduces infection by SARS-CoV-2 in cell culture models. bioRxiv (preprint).

Doremalen, NV. et al. (2020). ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv (preprint).

Emanuele, A. et al. (2020). Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients. bioRxiv (preprint).

Emig, CJ. et al. (2021). AUG-3387, a Human-Derived Monoclonal Antibody Neutralizes SARS-CoV-2 Variants and Reduces Viral Load from Therapeutic Treatment of Hamsters In Vivo. bioRxiv (preprint).

Faustini, SE. et al. (2021). Development of a high sensitivity ELISA detecting IgG, A & M antibodies to the SARS‐CoV‐2 spike glycoprotein in serum and saliva. Immunology. PMID: 33932228.

Findlay-Wilson, S. et al. (2022) “Development of a cost-effective ovine antibody-based therapy against SARS-COV-2 infection and contribution of antibodies specific to the spike subunit proteins,” Antiviral Research, 203, p. 105332.

Fotis, C. et al. (2020). Accurate SARS-CoV-2 seroprevalence surveys require robust multi-antigen assays. medRxiv (preprint).

Fritz. et al. (2020). High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health (preprint).

Garg, K. et al. (2022) “SARSPLEX: Multiplex serological ELISA with a holistic approach,” Viruses, 14(12), p. 2593.

Haga, K. et al. (2021). Nasal delivery of single-domain antibodies improves symptoms of SARS-CoV-2 infection in an animal model. bioRxiv (preprint).

Hansen, F. et al. (2022). SARS-CoV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract. Cell Reports.

Hanke, L. et al. (2020). An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. bioRxiv (preprint).

Hasanpourghadi, M. et al. (2022) “Heterologous chimpanzee adenovirus vector immunizations for SARS-COV-2 spike and nucleocapsid protect hamsters against COVID-19,” Microbes and Infection, p. 105082.

Hoffman, T. et al. (2021). Diagnostic Potential of a Luminex-Based Coronavirus Disease 2019 Suspension Immunoassay (COVID-19 SIA) for the Detection of Antibodies against SARS-CoV-2. PMID: 34073484.

Jagtap, S. et al. (2021). Evaluation of Spike Protein Antigens for SARS-CoV-2 Serology. medRxiv (preprint).

Johnson, SC. et al. (2021). Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS One. 2021 Feb 2;16(2):e0246366. PMID: 33529233.

Karp, DG. et al. (2020). A serological assay to detect SARS-CoV-2 antibodies in at-home collected fingerprick dried blood spots. medRxiv (preprint).

Karp, DF. et al. (2020). Sensitive and Specific Detection of SARS-CoV-2 Antibodies Using a High-Throughput, Fully Automated Liquid-Handling Robotic System. SLAS Technology. 2020 Aug 1-8. PMID: 32815769.

Kay, GA. et al. (2021). Immunoglobulin-G enzyme-linked immunosorbent assay predicts neutralising antibody response in convalescent SARS-CoV-2 patients. Research Square (preprint).

Kay, G.A. et al. (2022) “SARS-COV-2 enzyme-linked immunosorbent assays as proxies for plaque reduction neutralisation tests,” Scientific Reports, 12(1).

Kopanja, S. et al. (2022) “Characterization of the antibody response to SARS‐COV‐2 in a mildly affected pediatric population,” Pediatric Allergy and Immunology, 33(2).

Kumar, V. et al. (2021). Multicentric Evaluation of a Novel Point of Care Electrochemical ELISA Platform for SARS-CoV-2 Specific IgG and IgM Antibody Assay. MedRxiv (preprint).

Lassauniere, R. et al. (2021). Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines. 2021 Dec 20;6(1):156. PMID: 34930909

Lasserre, P. et al. (2021). A SARS-CoV-2 aptasensor based on electrochemical impedance spectroscopy and low-cost gold electrode substrates. chemRxiv (preprint).

Lehman, AA. et al. (2020). Deconvoluting the T cell response to SARS-CoV-2: specificity versus chance- and cognate cross-reactivity. bioRxiv (preprint).

Lee, Y-K. et al. (2022). Carbohydrate Ligands for COVID-19 Spike Proteins. Viruses.

Leon, G. et al. (2020). Development and pre-clinical characterization of two therapeutic equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. bioRxiv (preprint).

Mast, FD. et al. (2021). Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. bioRxiv (preprint). PMID: 33851164.

Marzi, R. et al. (2023) “Maturation of SARS-COV-2 spike-specific memory B cells drives resilience to viral escape,” iScience, 26(1), p. 105726.

Mazhari, R. et al. (2021). SARS-CoV-2 Multi-Antigen Serology Assay. Methods Protoc, 4(4), 72. MDPI.

Mazzini, L. et al. (2021). Comparative analyses of SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibodies from human serum samples. J Immunol Methods . 2021 Feb;489:112937. PMID: 33253698.

Moakes, R. et al. (2021). Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS‐COV‐2. Adv Mater. 2021 May 31 : 2008304. PMID: 34060150.

Moore, AC. et al. (2020). Pre-clinical studies of a recombinant adenoviral mucosal vaccine to prevent SARS-CoV-2 infection. bioRxiv (preprint).

Najjar, D. et al. (2022) “A lab-on-a-chip for the concurrent electrochemical detection of SARS-COV-2 RNA and anti-SARS-cov-2 antibodies in saliva and plasma,” Nature Biomedical Engineering, 6(8), pp. 968–978.

Randad, PR. et al. (2020). COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. Journal of Clinical Microbiology. PMID: 32511537

Reynolds, C.J. et al. (2022) “Immune boosting by B.1.1.529 ( Omicron) depends on previous SARS-COV-2 exposure,” Science, 377(6603).

Rosadas, C. et al. (2022). Detection and Quantification of Antibody to SARS CoV 2 Receptor Binding Domain provides enhanced Sensitivity, Specificity and Utility. J Virol Methods. 2022 Jan 22;302:114475. PMID: 35077719.

Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.

Rosenke, K. et al. (2021). UK B.1.1.7 (Alpha) variant exhibits increased respiratory replication and shedding in nonhuman primates. Emerg Microbes Infect. 2021 Nov 1;1-38. PMID: 34724885.

Seow, J. et al. (2022) “A neutralizing epitope on the SD1 domain of SARS-COV-2 spike targeted following infection and Vaccination,” Cell Reports, 40(8), p. 111276.

Shaw, AM. et al. (2020). Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst. 2020 July 07: 5638-5646.

Sriwilaijaroen, N. and Suzuki, Y. (2022) “Roles of sialyl glycans in hcov-OC43, HCoV-HKU1, MERS-COV and SARS-COV-2 infections,” Methods in Molecular Biology, pp. 243–271.

Sziemal, AM. et al. (2021). Development of highly potent neutralising nanobodies against multiple SARS-CoV-2 variants including the variant of concern B.1.351. bioRxiv (preprint).

Thijsen, S. et al. (2020). Elevated nucleoprotein-induced interferon-γ release in COVID-19 patients detected in a SARS-CoV-2 enzyme-linked immunosorbent spot assay. J Infect. 2020 Sep; 81(3): 452–482.

Urbanowicz, RA. (2021). Two doses of the SARS-CoV-2 BNT162b2 vaccine enhances antibody responses to variants in individuals with prior SARS-CoV-2 infection. Sci Transl Med. 2021 Aug 10. PMID: 34376569.

Watson, R. et al. (2022) “Efficacy of antimicrobial and anti-viral coated air filters to prevent the spread of airborne pathogens,” Scientific Reports, 12(1).

SARS-CoV-2 Spike Subunit 2 (S2)
Andreano, E. et al. (2020). Extremely potent human monoclonal antibodies from convalescent Covid-19 patients. bioRxiv (preprint).

Andriuta, D. et al. (2020). COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF.  Journal of Neurology. 2020 Jun 11 : 1–2. PMID: 32529577.

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Casswell, S. et al. (2021). COVID-19 Antibody Testing of Patients Admitted to the ICU by a Novel, Point-of-Care Assay, and the Relationship to Survival. Research Square (preprint).

Doremalen, NV. et al. (2020). ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv (preprint).

Emanuele, A. et al. (2020). Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients. bioRxiv (preprint).

Fritz. et al. (2020). High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health (preprint).

Garrett, ME. et al. (2021). High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell. May 27;184(11):2927-2938.e11. PMID: 34010620

Jagtap, S. et al. (2021). Evaluation of Spike Protein Antigens for SARS-CoV-2 Serology. medRxiv (preprint).

Kay, GA. et al. (2021). Immunoglobulin-G enzyme-linked immunosorbent assay predicts neutralising antibody response in convalescent SARS-CoV-2 patients. Research Square (preprint).

Kei, H. et al. (2021). Nasal delivery of single-domain antibodies improves symptoms of SARS-CoV-2 infection in an animal model. bioRxiv (preprint).

Lassauniere, R. et al. (2021). Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines. 2021 Dec 20;6(1):156. PMID: 34930909

Lee, Y-K. et al. (2022). Carbohydrate Ligands for COVID-19 Spike Proteins. Viruses.

Mast, FD. et al. (2021). Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. bioRxiv (preprint). PMID: 33851164.

Mazhari, R. et al. (2021). SARS-CoV-2 Multi-Antigen Serology Assay. Methods Protoc, 4(4), 72. MDPI.

Moore, AC. et al. (2020). Pre-clinical studies of a recombinant adenoviral mucosal vaccine to prevent SARS-CoV-2 infection. bioRxiv (preprint).

Piccoli, L. et al. (2020). Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020 Sep 16. PMCID: PMC7494283.

Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.

Shaw, AM. et al. (2020). Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst. 2020 July 07: 5638-5646.

Tan, Q. et al. (2022) “High sensitivity detection of SARS-COV-2 by an optofluidic hollow eccentric core fiber,” Biomedical Optics Express, 13(9), p. 4592.

SARS-CoV-2 Whole Spike
Biering, SB. et al. (2021). SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. bioRxiv (preprint). PMID: 34931188

McClements, J. et al. (2022) “Molecularly imprinted polymer nanoparticles enable rapid, reliable, and robust point-of-care thermal detection of SARS-COV-2,” ACS Sensors, 7(4), pp. 1122–1131.

Miller, LM. et al. (2021). Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. J Am Chem Soc. 2021 Mar 17;143(10):3959-3966. PMID: 33657316.

Imbrechts, M. et al. (2021). Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. medRxiv (preprint).

Solastie, A. et al. (2021). A Highly Sensitive and Specific SARS-CoV-2 Spike- and Nucleoprotein-Based Fluorescent Multiplex Immunoassay (FMIA) to Measure IgG, IgA, and IgM Class Antibodies. Microbiol Spectr. 2021 Nov 17;9(3):e0113121. PMID: 34787485

Wechselberger, C. et al. (2020). Performance evaluation of serological assays to determine the immunoglobulin status in SARS-CoV-2 infected patients. Journal of Clinical Virology. 2020 Aug 11;131. PMID: 32810840.

Wellens, J. et al. (2021). Combination therapy of infliximab and thiopurines, but not monotherapy with infliximab or vedolizumab, is associated with attenuated IgA and neutralisation responses to SARS-CoV-2 in inflammatory bowel disease. medRxiv (preprint).

Windsor, W.J. et al. (2022) “Harmonization of multiple SARS-COV-2 reference materials using the who is (NIBSC 20/136): Results and implications,” Frontiers in Microbiology, 13.

 

SARS-CoV-2 Spike Receptor-Binding Domain (RBD)
Aguilar Rangel, M. et al. (2022) “Fragment-based computational design of antibodies targeting structured epitopes,” Science Advances, 8(45).

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Fritz, M. et al. (2022) “First evidence of natural SARS-COV-2 infection in domestic rabbits,” Veterinary Sciences, 9(2), p. 49.

Haghighi, M. et al. (2021). Different formulations of inactivated SARS-CoV-2 vaccine candidates in human compatible adjuvants: Potency studies in mice showed different platforms of immune responses. Research Square (preprint).

Heaney, CD. et al. (2021). Comparative performance of multiplex salivary and commercially available serologic assays to detect SARS-CoV-2 IgG and neutralization titers. medRxiv (preprint). 2021 Feb 1;2021.01.28.21250717. PMID: 33532806.

Hansen, F. et al. (2022) “SARS-COV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract,” Cell Reports, 38(11), p. 110515.

Imbrechts, M. et al. (2021). Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. medRxiv (preprint).

Lehman, AA. et al. (2020). Deconvoluting the T cell response to SARS-CoV-2: specificity versus chance- and cognate cross-reactivity. bioRxiv (preprint).

Lenguiya, L.H. et al. (2023) “Whole-genome characterization of SARS-COV-2 reveals simultaneous circulation of three variants and a putative recombination (20B/20H) in pets, Brazzaville, republic of the Congo,” Viruses, 15(4), p. 933.

Puig, H. et al. (2021). Simultaneous detection of SARS-CoV-2 RNA and host antibodies enabled by a multiplexed electrochemical sensor platform. medRxiv (preprint).

Ravlo, E. et al. (2022) “Antiviral immunoglobulins of chicken egg yolk for potential prevention of SARS-COV-2 infection,” Viruses, 14(10), p. 2121.

Reynolds, C.J. et al. (2022) “Immune boosting by B.1.1.529 ( Omicron) depends on previous SARS-COV-2 exposure,” Science, 377(6603).

Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.

Rosenke, K. et al. (2021). UK B.1.1.7 (Alpha) variant exhibits increased respiratory replication and shedding in nonhuman primates. Emerg Microbes Infect. 2021 Nov 1;1-38. PMID: 34724885.

Rosadas, C. et al. (2022) “Detection and quantification of antibody to SARS COV 2 receptor binding domain provides enhanced sensitivity, specificity and utility,” Journal of Virological Methods, 302, p. 114475.

Solastie, A. et al. (2021). A Highly Sensitive and Specific SARS-CoV-2 Spike- and Nucleoprotein-Based Fluorescent Multiplex Immunoassay (FMIA) to Measure IgG, IgA, and IgM Class Antibodies. Microbiol Spectr. 2021 Nov 17;9(3):e0113121. PMID: 34787485

Thomaz, D.V. et al. (2022) “Effect of recombinant antibodies and MIP nanoparticles on the electrical behavior of impedimetric biorecognition surfaces for SARS-COV-2 spike glycoprotein: A short report,” Electrochem, 3(3), pp. 538–548.

 

 

 

SARS-CoV-2 Nucleoprotein
Andriuta, D. et al. (2020). COVID-19 encephalopathy: detection of antibodies against SARS-CoV-2 in CSF.  Journal of Neurology. 2020 Jun 11 : 1–2. PMID: 32529577.

Bewley, KR. et al. (2021). Immunological and pathological outcomes of SARS-CoV-2 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques. Sci Adv. 2021 Sep 10;7(37):eabg7996. PMID: 34516768

Bixler, SL. et al. (2021). Aerosol Exposure of Cynomolgus Macaques to SARS-CoV-2 Results in More Severe Pathology than Existing Models. bioRxiv (preprint).

Bixler, S.L. et al. (2022) “Exposure route influences disease severity in the COVID-19 cynomolgus macaque model,” Viruses, 14(5), p. 1013.

Brochot, E. et al. (2020). Anti-Spike, anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv (preprint).

Everett, HE. et al. (2021). Intranasal Infection of Ferrets with SARS-CoV-2 as a Model for Asymptomatic Human Infection. Viruses. 2021 Jan 15;13(1):E113. PMID: 33467732.

Faustini, SE. et al. (2021). Development of a high sensitivity ELISA detecting IgG, A & M antibodies to the SARS‐CoV‐2 spike glycoprotein in serum and saliva. Immunology. PMID: 33932228.

Fotis, C. et al. (2020). Accurate SARS-CoV-2 seroprevalence surveys require robust multi-antigen assays. medRxiv (preprint).

Fritz. et al. (2020). High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health (preprint).

Golden, JW. (2021). Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease. J Gen Virol. 102(5). PMID: 33961540.

Heaney, CD. et al. (2021). Comparative performance of multiplex salivary and commercially available serologic assays to detect SARS-CoV-2 IgG and neutralization titers. medRxiv (preprint). 2021 Feb 1;2021.01.28.21250717. PMID: 33532806.

Hill, H.J. et al. (2022) “Comparison of a prototype SARS-COV-2 lateral flow immunoassay with the BINAXNOWTM COVID-19 antigen card,” Viruses, 14(12), p. 2609.

Ijaz, S. et al. (2022) “Mapping of SARS-COV-2 IGM and IGG in gingival crevicular fluid: Antibody dynamics and linkage to severity of COVID-19 in hospital inpatients,” Journal of Infection, 85(2), pp. 152–160.

Johnston, SC. et al. (2021). Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS One. 2021 Feb 2;16(2):e0246366. PMID: 33529233.

Kay, GA. et al. (2021). Immunoglobulin-G enzyme-linked immunosorbent assay predicts neutralising antibody response in convalescent SARS-CoV-2 patients. Research Square (preprint).

Leon, G. et al. (2020). Development and pre-clinical characterization of two therapeutic equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. bioRxiv (preprint).

Maltz-Matyschsyk, M. et al. (2023) “Development of a biomarker signature using grating-coupled fluorescence plasmonic microarray for diagnosis of MIS-C,” Frontiers in Bioengineering and Biotechnology, 11.

Piccoli, L. et al. (2020). Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020 Sep 16. PMCID: PMC7494283.

Pisanic, N. et al. (2023) “Methodological approaches to optimize multiplex oral fluid SARS-COV-2 IGG assay performance and correlation with serologic and neutralizing antibody responses,” Journal of Immunological Methods, 514, p. 113440.

Randad, PR. et al. (2021). Durability of SARS-CoV-2-specific IgG responses in saliva for up to 8 months after infection. medRxiv (preprint).

Salguero, FJ. et al. (2020). Comparison of Rhesus and Cynomolgus macaques as an authentic model for COVID-19. bioRxiv (preprint).

Shaw, AM. et al. (2020). Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst. 2020 July 07: 5638-5646.

Solastie, A. et al. (2021). A Highly Sensitive and Specific SARS-CoV-2 Spike- and Nucleoprotein-Based Fluorescent Multiplex Immunoassay (FMIA) to Measure IgG, IgA, and IgM Class Antibodies. Microbiol Spectr. 2021 Nov 17;9(3):e0113121. PMID: 34787485

Timilsina, S.S. et al. (2023) “Rapid quantitation of SARS-COV-2 antibodies in clinical samples with an electrochemical sensor,” Biosensors and Bioelectronics, 223, p. 115037.

Tsai, W-Y. et al. (2021). A real-time and high-throughput neutralization test based on SARS-CoV-2 pseudovirus containing monomeric infrared fluorescent protein as reporter. Emerg Microbes Infect. 2021 Apr 30;1-38. PMID: 33929934

Uprichard, S.L. et al. (2022) “Antibody response to SARS-COV-2 infection and vaccination in covid-19-naïve and experienced individuals,” Viruses, 14(2), p. 370.

SARS-CoV-2 Spike-E-M Mosaic
Emig, CJ. et al. (2021). AUG-3387, a Human-Derived Monoclonal Antibody Neutralizes SARS-CoV-2 Variants and Reduces Viral Load from Therapeutic Treatment of Hamsters In Vivo. bioRxiv (preprint).

Leon, G. et al. (2020). Development and pre-clinical characterization of two therapeutic equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. bioRxiv (preprint).

SARS-CoV-2 NTRL Kits
Wellens, J. et al. (2021). Combination therapy of infliximab and thiopurines, but not monotherapy with infliximab or vedolizumab, is associated with attenuated IgA and neutralisation responses to SARS-CoV-2 in inflammatory bowel disease. medRxiv (preprint).
SARS-CoV Spike Subunit 1 (S1)
Haga, K. et al. (2021). Nasal delivery of single-domain antibodies improves symptoms of SARS-CoV-2 infection in an animal model. BioRxiv (preprint).

Mazhari, R. et al. (2021). SARS-CoV-2 Multi-Antigen Serology Assay. Methods Protoc, 4(4), 72. MDPI.

SARS Envelope
Shaw, AM. et al. (2020). Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst. 2020 July 07: 5638-5646.
SARS Membrane
Shaw, AM. et al. (2020). Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst. 2020 July 07: 5638-5646.
SARS Nucleoprotein
Francisco, JS. et al. (2021). Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. Nat Commun. 2021 Feb 24;12(1):1260. PMID: 33627662.

Randad, PR. et al. (2020). COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. Journal of Clinical Microbiology. PMID: 32511537

Randad, PR. et al. (2021). Durability of SARS-CoV-2-specific IgG responses in saliva for up to 8 months after infection. medRxiv (preprint).

Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.

HCoV-NL63 Nucleoprotein
Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.
HCoV-OC43 Spike
McNaughton, AL. et al. (2021). Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. MedRxiv (preprint).
HCoV-229E Spike Subunit 1 (S1)
Pattinson, D. et al. (2021). A method to reduce ELISA serial dilution assay workload applied to SARS-CoV-2 and seasonal HCoVs. medRxiv (preprint)
HCoV-229E Spike Subunit 2 (S2)
Pattinson, D. et al. (2021). A method to reduce ELISA serial dilution assay workload applied to SARS-CoV-2 and seasonal HCoVs. medRxiv (preprint)
HCoV-229E Nucleoprotein
Mazhari, R. et al. (2021). SARS-CoV-2 Multi-Antigen Serology Assay. Methods Protoc, 4(4), 72. MDPI.

Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.

MERS-CoV Spike Subunit 1 (S1)
Brockbank, SMV. et al, (2021). SARS-CoV-2 comprehensive receptor profiling: mechanistic insight to drive new therapeutic
strategies. bioRxiv (preprint).
ACE2
Valero, K.  et al. (2021). A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc Natl Acad Sci USA. 2021 Dec 14;118(50):e2112942118. PMID: 34876524
Antibodies
Ali, A.M. et al. (2022) “Rhamnolipid nano-micelles inhibit SARS-COV-2 infection and have no dermal or eye toxic effects in rabbits,” Antibiotics, 11(11), p. 1556.

Bullen, G. et al. (2021). Cross-Reactive SARS-CoV-2 Neutralizing Antibodies From Deep Mining of Early Patient Responses.  Front Immunol. 2021; 12: 678570. PMID: 34211469

Davies, SP. et al. (2021). The hyperlipidaemic drug fenofibrate significantly reduces infection by SARS-CoV-2 in cell culture models. bioRxiv (preprint).

Dicken, SJ. et al. (2021). Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. bioRxiv (preprint).

Dub, T. et al. (2020). Transmission of SARS-CoV-2 following exposure in school settings: experience from two Helsinki area exposure incidents. medRxiV (preprint).

Ferrari, M. et al. (2021). Characterisation of a novel ACE2-based therapeutic with enhanced rather than reduced activity against SARS-CoV2 variants. bioRxiv (preprint).

Jagtap, S. et al. (2021). Evaluation of Spike Protein Antigens for SARS-CoV-2 Serology. medRxiv (preprint).

Kumar, V.  et al. (2021). Multicentric Evaluation of a Novel Point of Care Electrochemical ELISA Platform for SARS-CoV-2 Specific IgG and IgM Antibody Assay. MedRxiv (preprint).

Mazzini, L. et al. (2021). Comparative analyses of SARS-CoV-2 binding (IgG, IgM, IgA) and neutralizing antibodies from human serum samples. J Immunol Methods . 2021 Feb;489:112937. PMID: 33253698.

Moakes, RJA. et al. (2020). Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2. bioRxiv (preprint).

Sil, BK. et al. (2021). Development and performance evaluation of a rapid in-house ELISA for retrospective serosurveillance of SARS-CoV-2. PLoS One. 2021 Feb 2;16(2):e0246346. PMID: 33529223.

Southworth, T., Jackson, N. and Singh, D. (2022) “Airway immune responses to COVID-19 vaccination in COPD patients and healthy subjects,” European Respiratory Journal, 60(2), p. 2200497.

Tan, Q. et al. (2022) “High sensitivity detection of SARS-COV-2 by an optofluidic hollow eccentric core fiber,” Biomedical Optics Express, 13(9), p. 4592.

Vojdani, A. et al. (2021). Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front. Immunol., 19 January 2021.

Wang, J. et al. (2022). Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. Cell Rep Methods. 2022 Feb 1;100170. PMID: 35128513

Qi, S. et al. (2023) “Porous cellulose thin films as sustainable and effective antimicrobial surface coatings,” ACS Applied Materials & Interfaces, 15(17), pp. 20638–20648.

 

SARS-CoV-2 viral lysate
Yang, J. et al. (2023) “Development of nucleocapsid-specific monoclonal antibodies for SARS-COV-2 and their ELISA diagnostics on an automatic microfluidic device,” Sensors and Actuators B: Chemical, 380, p. 133331.
SARS-CoV-2 Spike Glycoprotein (Trimeric)
Basile, K. et al. (2022) “Improved neutralisation of the SARS-COV-2 omicron variant following a booster dose of Pfizer-BioNTech (BNT162B2) COVID-19 vaccine,” Viruses, 14(9), p. 2023.

Jung, J.W. et al. (2022) “Plant‐based expression and characterization of SARS‐COV‐2 virus‐like particles presenting a native Spike protein,” Plant Biotechnology Journal, 20(7), pp. 1363–1372.

Lenguiya, L.H. et al. (2023) “Whole-genome characterization of SARS-COV-2 reveals simultaneous circulation of three variants and a putative recombination (20B/20H) in pets, Brazzaville, republic of the Congo,” Viruses, 15(4), p. 933.

Mouse Anti-Canine Coronavirus Nucleoprotein Antibody (M938)
Cerracchio, C. et al. (2022) “Canine coronavirus activates aryl hydrocarbon receptor during in vitro infection,” Viruses, 14(11), p. 2437.

Cerracchio, C. et al. (2022) “Effectiveness of the fungal metabolite 3-O-methylfunicone towards canine coronavirus in a canine fibrosarcoma cell line (A72),” Antibiotics, 11(11), p. 1594.

HCoV-229E full-length spike
Pattinson, D. et al. (2022) “A novel method to reduce ELISA serial dilution assay workload applied to SARS-COV-2 and seasonal HCoVs,” Viruses, 14(3), p. 562.
Diphtheria Toxin
Costa, DC. The Tn antigen promotes lung tumor growth by fostering immunosuppression and angiogenesis via interaction with Macrophage Galactose-type lectin 2 (MGL2). Cancer Lett. 2021 Oct 10;518:72-81. PMID: 34144098.

Costa, M. et al. (2022) “Macrophage gal/galnac lectin 2 (MGL2)+ peritoneal antigen presenting cells during Fasciola hepatica infection are essential for regulatory T cell induction,” Scientific Reports, 12(1).

Steffie, J. Functional dissection of regulatory T cell plasticity and stability. KU Leuven (PhD thesis).

 

Gn protein
Golden, JW. et al. (2019). GP38-Targeting Monoclonal Antibodies Protect Adult Mice Against Lethal Crimean-Congo Hemorrhagic Fever Virus Infection. Science Advances.

Darci, RS. et al. (2019). Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathogens. Sep 26;15(9). PMID: 31557262

Fels, JM. et al. (2021). Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell. May 26;S0092-8674(21)00584-5. PMID: 34077751

Saunders, J.E. et al. (2023) “Adenoviral vectored vaccination protects against Crimean-Congo haemorrhagic fever disease in a lethal challenge model,” eBioMedicine, 90, p. 104523.

Tran, P.-T.-H. et al. (2022) “Enhanced seroconversion to West Nile virus proteins in mice by West Nile Kunjin replicon virus-like particles expressing glycoproteins from Crimean–Congo hemorrhagic fever virus,” Pathogens, 11(2), p. 233.

Nucleoprotein
Belij-Rammerstorfer, S. et al. (2022) “Development of anti-Crimean-congo hemorrhagic fever virus GC and NP-specific ELISA for detection of antibodies in domestic animal sera,” Frontiers in Veterinary Science, 9.

Golden, JW. et al. (2019). GP38-Targeting Monoclonal Antibodies Protect Adult Mice Against Lethal Crimean-Congo Hemorrhagic Fever Virus Infection. Science Advances. PMID: 31309159.

Antibodies
Tran, P.-T.-H. et al. (2022) “Enhanced seroconversion to West Nile virus proteins in mice by West Nile Kunjin replicon virus-like particles expressing glycoproteins from Crimean–Congo hemorrhagic fever virus,” Pathogens, 11(2), p. 233.
Gc Protein
Belij-Rammerstorfer, S. et al. (2022) “Development of anti-Crimean-congo hemorrhagic fever virus GC and NP-specific ELISA for detection of antibodies in domestic animal sera,” Frontiers in Veterinary Science, 9.

Saunders, J.E. et al. (2023) “Adenoviral vectored vaccination protects against Crimean-Congo haemorrhagic fever disease in a lethal challenge model,” eBioMedicine, 90, p. 104523.

CMV CL
Albayati, Z. et al. (2017). The Influence of Cytomegalovirus on Expression of HLA-G and its Ligand KIR2DL4 by Human Peripheral Blood Leucocyte Subsets. Scand J Immunol. Nov;86(5):396-407. PMID: 28817184

Huang, TS. et al. (2014). No evidence of association between human cytomegalovirus infection and papillary thyroid cancer. World J Surg Oncol. Feb 21;12:41. PMID: 24559116

Nabatanzi, R. et al. (2014). Low antigen-specific CD4 T-cell immune responses despite normal absolute CD4 counts after long-term antiretroviral therapy an African cohort. Immunol Lett. Dec;162(2 Pt B):264-72. PMID: 25263953

CMV Pentamer
Dorfman, JR. et al. (2021). In utero human cytomegalovirus infection is associated with increased levels of putatively protective maternal antibodies in nonprimary infection: evidence for boosting but not protection. Clin Infect Dis. 2021 Feb 9. PMID: 33560335

John, S. et al. (2018). Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018 Mar 14;36(12):1689-1699. PMID: 29456015

Hassett, KJ. et al. (2021). Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release. 2021 May 18;S0168-3659(21)00237-6. PMID: 34019945

Koppert, S. et al. (2021). Affinity tag coating enables reliable detection of antigen-specific B cells in ImmunoSpot assays. medRxiV (preprint).

Liu, Y. et al. (2020). A Replication-Defective Human Cytomegalovirus Vaccine Elicits Humoral Immune Responses Analogous to Those with Natural Infection. J Virol. 2019 Nov 13;93(23). pii: e00747-19. PMID: 31511385

Schampera, MS. et al. (2019). Role of Pentamer Complex-Specific and IgG Subclass 3 Antibodies in HCMV Hyperimmunoglobulin and Standard Intravenous IgG Preparations. Med Microbiol Immunol. Feb, 208(1), 69-80. PMID: 30203132

CMV Lysate
Almehmadi, MM. (2014). CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients. University of Liverpool.

Speth, P. et al. (2021). Immunocompromised Patients with Therapy-Refractory Chronic Skin Diseases Show Reactivation of Latent Epstein‒Barr Virus and Cytomegalovirus Infection. J Invest Dermatol. 2021 Sep 1;S0022-202X(21)02161-8. PMID: 34480891

CMV Antibodies
Gogesch, P. et al. (2019). Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel). Sep, 7(3), 104. PMID: 31480520
NS1 Proteins (All Serotypes)
Barban, V. et al. (2018). Improvement of the Dengue Virus (DENV) Nonhuman Primate Model via a Reverse Translational Approach Based on Dengue Vaccine Clinical Efficacy Data against DENV-2 and -4. Journal of Virology.

Beatty, PR. et al. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med. Sep 9;7(304):304ra141. PMID: 26355030

Bosch, I. et al. (2017). Rapid Antigen Tests for Dengue Virus Serotypes and Zika Virus In Patient Serum. Science Translational Medicine. PMID: 28954927

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Castanha, PMS. et al. (2019). Perinatal Analyses of Zika- and Dengue Virus-Specific Neutralizing Antibodies: A Microcephaly Case-Control Study in an Area of High Dengue Endemicity in Brazil. PLOS Neglected Tropical Diseases. PMID: 30856223

de Puig, H. et al. (2022) “Multiplexed rapid antigen tests developed using multicolored nanoparticles and cross-reactive antibody pairs: Implications for pandemic preparedness,” Nano Today, 47, p. 101669.

Espinosa, DA. et al. (2019). Cyclic Dinucleotide-Adjuvanted Dengue Virus Nonstructural Protein 1 Induces Protective Antibody and T Cell Responses. The Journal of Immunology. PMID: 30642979

Galula, JU. et al. (2021). Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel). 2021 Apr 21;11(5):741. PMID: 33919324

Gelanew, T. et al. (2015). Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. Sep 15;222:214-23. PMID: 26070890

Glasner, DR. et al. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. Nov 9;13(11):e1006673. PMID: 29121099

Goncalves, BDS. et al. (2019). Dynamics of Nonstructural glycoprotein-1 in Dengue Patients Presenting With Different Clinical Manifestations From 1986 to 2012 in Rio De Janeiro, Brazil. J Med Virol. Apr, 91(4), 555-563. PMID: 30411369

Matsunaga, K-I. et al. (2021). Competitive ELISA for a serologic test to detect dengue serotype-specic anti-NS1 IgGs using highanity UB-DNA aptamers. Research Square (preprint).

Matsunaga, K-I. et al. (2021). High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021 Jun 25;gkab515. PMID: 34169309

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Montes-Grajales, D. et al. (2020). In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res. Jan;173:104668. PMID: 31786251

Nascimento, EJM. et al. (2018). Development of antibody biomarkers of long term and recent dengue virus infections. J Virol Methods. Apr 21;257:62-68. PMID: 29684416

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. Mar 19;257:48-57. PMID: 2956751

Needham, JW. et al. (2019). Interferometric Reflectance Imaging Sensor (IRIS) for Molecular Kinetics With a Low-Cost, Disposable Fluidic Cartridge. Methods Mol Biol. 2027, 15-28. PMID: 31309469

O’Donnell, K. (2020). Avian IgY As An Immunotherapy For Flaviviral Infections. University of North Dakota. Jun 12. (PhD thesis).

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. Jul 14;12(7):e1005738. PMID: 27416066

Rönnberg, B. et al. (2017). Compensating for cross-reactions using avidity and computation in a suspension multiplex immunoassay for serotyping of Zika versus other flavivirus infections. Med Microbiol Immunol. Oct, 206(5):383-401. PMID: 28852878

Roberts, A. et al. (2023) “Point‐of‐care detection of Japanese encephalitis virus biomarker in clinical samples using a portable smartphone‐enabled electrochemical ‘Sensit’ device,” Bioengineering & Translational Medicine [Preprint].

Rogers, TF. et al. (2017). Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors. Sci Immunol. Aug 18;2(14). PMID: 28821561

Sharma, M. et al. (2019). Magnitude and Functionality of the NS1-Specific Antibody Response Elicited by a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis. Feb 19. PMID: 30783676

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706 

Tedder, RS. et al. (2019). Modulated Zika virus NS1 conjugate offers advantages for accurate detection of Zika virus specific antibody in double antigen binding and Ig capture enzyme immunoassays, PLoS One. Aug, 14(8). PMID: 31374094

Tien, S.-M. et al. (2022) “Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model,” PLOS Pathogens, 18(4).

Tran, TV. et al. (2019). Development of a Highly Sensitive Magneto-Enzyme Lateral Flow Immunoassay for Dengue NS1 Detection. PeerJ. Sep, 7. PMID: 31579630

Wang, C. et al. (2019). Endocytosis of Flavivirus NS1 Is Required for NS1-mediated Endothelial Hyperpermeability and Is Abolished by a Single N-glycosylation Site Mutation. PLoS Pathog. Jul, 15(7). PMCID: PMC6687192

Warner, NL. et al. (2021). Development of Bacteriophage Virus-Like Particle Vaccines Displaying Conserved Epitopes of Dengue Virus Non-Structural Protein 1. Vaccines 2021, 9(7), 726.

Dengue Virus Serotype 1 NS1 Protein (DENV1-NS1)
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Albuquerque, D.C. et al. (2022) “Combined detection of molecular and serological signatures of viral infections: The dual assay concept,” Biosensors and Bioelectronics, 210, p. 114302.

Badolato-Corrêa, J. et al. (2018). Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection. Immun Inflamm Dis. Jun;6(2):194-206. PMID: 29282904

Galula, JU. et al. (2021). Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel). 2021 Apr 21;11(5):741. PMID: 33919324

Jayathilaka, D. et al. (2018). Role of NS1 Antibodies in the Pathogenesis of Acute Secondary Dengue Infection. Nature Communications. PMID: 30531923

Matsanuga, K-I. et al. (2021). High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021 Jun 25;gkab515. PMID: 34169309

Nunes, PCG. et al. (2018). NS1 Antigenemia and Viraemia Load: Potential Markers of Progression to Dengue Fatal Outcome. Viruses. PMID: 29903980

Poltep, K. et al. (2021). Development of a Dengue Virus Serotype-Specific Non-Structural Protein 1 Capture Immunochromatography Method. Sensors 2021, 21(23), 7809.

Puerta-Guardo, H. et al. (2022) “Flavivirus NS1 triggers tissue-specific disassembly of intercellular junctions leading to barrier dysfunction and vascular leak in a gsk-3β-dependent manner,” Pathogens, 11(6), p. 615.

Silva, MS. et al. (2021). Rational selection of hidden epitopes for a molecularly imprinted electrochemical sensor in the recognition of heat-denatured dengue NS1 protein. Biosensors and Bioelectronics.

Tsai, W-Y. et al. (2018). Use of Urea Wash ELISA to Distinguish Dengue Virus Infections. CDC.

Tsai, W-Y. et al. (2017). Distinguishing Secondary Dengue Virus Infection from Zika Virus Infection with Previous Dengue by a Combination of 3 Simple Serological Tools. Clinical Infectious Diseases. PMID: 29020159 

Versiani, A.F. et al. (2023) “Performance of vidas® diagnostic tests for the automated detection of dengue virus NS1 antigen and of anti-dengue virus IGM and IGG antibodies: A multicentre, international study,” Diagnostics, 13(6), p. 1137.

Warner, N.L., Core, S.B. and Frietze, K.M. (2022) “Unbiased identification of dengue virus non-structural protein 1 peptides for use in vaccine design,” Vaccines, 10(12), p. 2028.

Dengue Virus Serotype 2 NS1 Protein (DENV2-NS1)
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Biering, SB. et al. (2021). SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. bioRxiv (preprint). PMID: 34931188

Chen, HR. et al. (2016). Dengue Virus Non-structural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis. Jul 13;10(7):e0004828. PMID: 27409803

Chen, HR. et al. (2018). Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog. Apr 27;14(4):e1007033. PMID: 29702687

Cheung, Y. et al. (2020). A Critical Role for Perivascular Cells in Amplifying Viral Haemorrhage Induced by Dengue Virus Non-Structural Protein 1. BioRxiv. Feb 14. (Preprint).

Cheng, Y.-L. et al. (2022) “Antibodies against the SARS-COV-2 S1-RBD cross-react with dengue virus and Hinder Dengue Pathogenesis,” Frontiers in Immunology, 13.

Conde, JN. et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol. Oct 14;90(21):9570-9581. PMID: 27512066

Galula, JU. et al. (2021). Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel). 2021 Apr 21;11(5):741. PMID: 33919324.

Garcia-Oliva, C. et al. (2020). Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry. Feb, 26(7), 1588-1596. PMID: 31644824

Jayathilaka, D. et al. (2018). Role of NS1 Antibodies in the Pathogenesis of Acute Secondary Dengue Infection. Nature Communications. PMID: 30531923

Lee, P. et al. (2020). Relative contribution of non-structural protein 1 in dengue pathogenesis. BioRxiv. Feb 02. (Preprint).

Mani, S. et al. (2018). Serological Cross Reactivity between Zika and Dengue Viruses in Experimentally Infected Monkeys. Virologica Sinica. PMID: 30155852

Matsanuga, K-I. et al. (2021). High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021 Jun 25;gkab515. PMID: 34169309

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Roberts, A., Mahari, S. and Gandhi, S. (2022) “Signal enhancing gold nanorods (GNR) and antibody modified electrochemical nanosensor for ultrasensitive detection of Japanese encephalitis virus (JEV) secretory non-structural 1 (NS1) biomarker,” Journal of Electroanalytical Chemistry, 919, p. 116563.

Tam, JO. et al. (2017). A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. J Immunoassay Immunochem. 38(4):355-377. PMID: 27982728

Dengue Virus Serotype 3 NS1 Protein (DENV2-NS1)
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Galula, JU. et al. (2021). Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel). 2021 Apr 21;11(5):741. PMID: 33919324.

Kimoto, M. et al. (2023) “Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion,” Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1871).

Matsanuga, K-I. et al. (2021). High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021 Jun 25;gkab515. PMID: 34169309

Ushijima, Y. et al. (2021). Surveillance of the major pathogenic arboviruses of public health concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus infections. BMC Infect Dis. 2021 Mar 17;21(1):265. PMID: 33731022.

Dengue Virus Serotype 4 NS1 Protein (DENV4-NS1)
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Galula, JU. et al. (2021). Comparable Accuracies of Nonstructural Protein 1- and Envelope Protein-Based Enzyme-Linked Immunosorbent Assays in Detecting Anti-Dengue Immunoglobulin G Antibodies. Diagnostics (Basel). 2021 Apr 21;11(5):741. PMID: 33919324.

Heringer, M. et al. (2017). Dengue type 4 in Rio de Janeiro, Brazil: case characterization following its introduction in an endemic region. BMC Infect Dis. Jun 9;17(1):410. PMID: 28599640

Matsanuga, K-I. et al. (2021). High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021 Jun 25;gkab515. PMID: 34169309

Ushijima, Y. et al. (2021). Surveillance of the major pathogenic arboviruses of public health concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus infections. BMC Infect Dis. 2021 Mar 17;21(1):265. PMID: 33731022.

Dengue Virus Serotype 2 Lysate
Nagar, PK. et al. (2020). Detection of Dengue Virus-Specific IgM and IgG Antibodies through Peptide Sequences of Envelope and NS1 Proteins for Serological Identification. Journal of Immunology Research. 2020 August 4th: 1-8.
Dengue Envelope Proteins
Durham, N. et al. (2019). Functional characterization and lineage analysis of broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. BioRxiv. Oct 02. (Preprint).

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Rogers, TF. et al. (2017). Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors. Sci Immunol. Aug 18;2(14). PMID: 28821561

Dengue Virus-Like Particles
Awadalkareem, A. et al. (2018). Multiplexed FluroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. The Journal of Immunology. PMID: 30413671

Deliot, A. et al. (2017) Visualization of Dengue virus like particles interacting with antibodies. The 16th European Microscopy Congress, Lyon, France.

Goldman, ER. et al. (2017). Bglbrick strategy for the construction of single domain antibody fusions. Heliyon. Dec 28;3(12):e00474. PMID: 29322100

Lecouturier, V. et al. (2018). Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes. Vaccine. Apr 26. pii: S0264-410X(18)30562-0. PMID: 29706291

Metz, SW. et al. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J. 2018 Apr 2;15(1):60. PMID: 29609659

Monferrer, A. et al. (2022) “Broad-spectrum virus trapping with heparan sulfate-modified DNA origami shells,” ACS Nano, 16(12), pp. 20002–20009.

Nascimento, EJ. et al. (2021). Development and Characterization of a Multiplex Assay to Quantify Complement-Fixing Antibodies against Dengue Virus. Int J Mol Sci. 2021 Nov 5;22(21):12004. PMID: 34769432

Ponndorf, D. et al. (2020). Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal. PMID: 33099859

Sanchez-Vargas, LA. et al. (2019). Longitudinal Analysis of Memory B and T Cell Responses to Dengue Virus in a 5-Year Prospective Cohort Study in Thailand. Front Immunol. Jun, 10, 1359. PMID: 31263466

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

Tsuji, I. et al. (2021). Development of a novel assay to assess the avidity of dengue virus-specific antibodies elicited in response to a tetravalent dengue vaccine. J Infect Dis. 2021 Feb 3;jiab064. PMID: 33534885.

Tsuji, I. et al. (2022) “Somatic hypermutation and framework mutations of variable region contribute to Anti-Zika virus-specific monoclonal antibody binding and function,” Journal of Virology, 96(11).

Dengue Virus Antibodies
Folly, A.J. et al. (2022) “Evidence for overwintering and autochthonous transmission of Usutu virus to wild birds following its redetection in the United Kingdom,” Transboundary and Emerging Diseases, 69(6), pp. 3684–3692.

Pedraza-Escalon, M. et al. (2020). Isolation and characterization of high anity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. Research Square (preprint).

Ponndorf, D. et al. (2020). Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal. PMID: 33099859

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

Warner, NL. et al. (2021). Development of Bacteriophage Virus-Like Particle Vaccines Displaying Conserved Epitopes of Dengue Virus Non-Structural Protein 1. Vaccines 2021, 9(7), 726.

Wilken, L. et al. (2023) “Recombinant modified vaccinia virus ankara expressing a glycosylation mutant of dengue virus NS1 induces specific antibody and T-cell responses in mice,” Vaccines, 11(4), p. 714.

Dengue Virus Serotype 2 Envelope Protein
Tantirimudalige, S.N. et al. (2022) “The ganglioside GM1A functions as a coreceptor/attachment factor for dengue virus during infection,” Journal of Biological Chemistry, 298(11), p. 102570.
GP1
Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

 

Ebola VLPs
Tang, H. et al. (2023) “Ebola virus–like particles reprogram cellular metabolism,” Journal of Molecular Medicine [Preprint].

E.coli O157 Antigen

E.coli O157 Lysate

Gangwar, R. et al. (2022) “Plasma functionalized carbon interfaces for biosensor application: Toward the real-time detection of escherichia coli o157:h7,” ACS Omega, 7(24), pp. 21025–21034. Available at: https://doi.org/10.1021/acsomega.2c01802.

 

HBV Envelope
Abdulkarem, AA. (2021). Understanding the viral diversity of Hepatitis B virus in Saudi Arabia using Next Generation Sequencing (NGS). PhD thesis, University of Glasgow.
HSV-2 Antibodies
Horton, MS. et al. (2021). Development of a microneutralization assay for HSV-2. J Virol Methods. 2021 Aug 24;297:114268. PMID: 34437874.
Misc.
Mahari, S. et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. Apr 29. (Preprint).
Haemagglutinin
Iriarte-Alonso, MA. et al. (2021). Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration. BioRxiV (preprint).

Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.

Yang, F. et al. (2021). Phage Display-Derived Peptide for the Specific Binding of SARS-CoV-2. ACS Publications. 2021 Dec.

Neuraminidase
Vatzia, E. et al. (2021). Respiratory and intramuscular immunization with ChAdOx2 NPM1-NA induces distinct immune responses in H1N1pdm09 pre-exposed pigs. Research Square (preprint).
Misc.
Mahari, S. et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. Apr 29. (Preprint).

 

JEV NS1
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Bernard, M.-C. et al. (2022) “Validation of a harmonized enzyme-linked-lectin-assay (Ella-NI) based neuraminidase inhibition assay standard operating procedure (SOP) for quantification of N1 influenza antibodies and the use of a calibrator to improve the reproducibility of the ella-ni with reverse genetics viral and recombinant neuraminidase antigens: A FLUCOP collaborative study,” Frontiers in Immunology, 13.

Mahari, S. et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. Apr 29. (Preprint).

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Roberts, A. et al. (2020). Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci Rep. Sep 3;10(1). PMID: 32884083

Roberts, A., Mahari, S. and Gandhi, S. (2022) “Signal enhancing gold nanorods (GNR) and antibody modified electrochemical nanosensor for ultrasensitive detection of Japanese encephalitis virus (JEV) secretory non-structural 1 (NS1) biomarker,” Journal of Electroanalytical Chemistry, 919, p. 116563.

Roberts, A. et al. (2023) “Point‐of‐care detection of Japanese encephalitis virus biomarker in clinical samples using a portable smartphone‐enabled electrochemical ‘Sensit’ device,” Bioengineering & Translational Medicine [Preprint].

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

JEV Antibodies
Pedraza-Escalon, M. et al. (2020). Isolation and characterization of high anity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. Research Square (preprint).

Roberts, A. et al. (2020). Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci Rep. Sep 3;10(1). PMID: 32884083

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

LASV GP1 and GP2
Akpogheneta, O. et al. (2021). Boosting understanding of Lassa Fever virus epidemiology: Field testing a novel assay to identify past Lassa Fever virus infection in blood and oral fluids of survivors and unexposed controls in Sierra Leone. PLoS Neg. Tr. Dis.

Muller, EM. et al. (2020). Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. NPJ Vaccines, 70: 1-17.

LASV Nucleoprotein
Kennedy, EM. et al. (2019). A Vaccine Based on Recombinant Modified Vaccinia Ankara Containing the Nucleoprotein From Lassa Virus Protects Against Disease Progression in a Guinea Pig Model. Vaccine, 37(36), 5404-5413. PMID: 31331770
Antibodies
Akpogheneta, O. et al. (2021). Boosting understanding of Lassa Fever virus epidemiology: Field testing a novel assay to identify past Lassa Fever virus infection in blood and oral fluids of survivors and unexposed controls in Sierra Leone. PLoS Neg. Tr. Dis.

Measles Virus

Measles Virus Immunoassays
Veklych, K. et al. (2021). Features of toll-like receptor type 9 expression on immunocompetent peripheral blood cells of patients with measles infection of varying severity. ScienceRise.

Nipah Virus

Glycoprotein
Doremalen, NV. et al. (2021). ChAdOx1 NiV vaccination protects against lethal Nipah Bangladesh virus infection in African green monkeys. BioRxiv (preprint).

Monath, T.P. et al. (2022) “Recombinant vesicular stomatitis vaccine against Nipah virus has a favorable safety profile: Model for assessment of live vaccines with neurotropic potential,” PLOS Pathogens, 18(6).

Nucleoprotein
Doremalen, NV. et al. (2021). ChAdOx1 NiV vaccination protects against lethal Nipah Bangladesh virus infection in African green monkeys. BioRxiv (preprint).
NoV GII.4 VLP
Gorji, ME. et al (2021). Influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated norovirus binding. Int J Food Microbiol. 2021 Feb 16;340:109058. PMID: 33461001

Malcom, THT. et al (2021). Fucoidan But Not 2′-Fucosyllactose Inhibits Human Norovirus Replication in Zebrafish Larvae. Viruses 2021, 13(3), 461.

Mirabelli, C. et al. (2021). Human norovirus infection of primary B cells triggers immune activation in vitro. BioRxiv (preprint).

NoV GII. Antibodies
Malcom, THT. et al (2021). Fucoidan But Not 2′-Fucosyllactose Inhibits Human Norovirus Replication in Zebrafish Larvae. Viruses 2021, 13(3), 461.
Norovirus GI.1 VLPs
Ertsgaard, C.T. et al. (2022) “Open-channel microfluidics via Resonant Wireless Power Transfer,” Nature Communications, 13(1).
VP1 of Norovirus GII.4
Alzahrani, A. et al. (2023) “Non-spherical gold nanoparticles enhanced fluorescence of carbon dots for norovirus-like particles detection,” Journal of Biological Engineering, 17(1).

Artman, C. et al. (2022) “Feasibility of polyclonal avian immunoglobulins (igy) as prophylaxis against human norovirus infection,” Viruses, 14(11), p. 2371.

 

RhinoVirus

Rhinovirus Lysate
Mavrikou, S. et al. (2022) “Ultra-fast and sensitive screening for antibodies against the SARS-COV-2 S1 spike antigen with a portable bioelectric biosensor,” Chemosensors, 10(7), p. 254. Available at: https://doi.org/10.3390/chemosensors10070254.
Rubella VLPs
Rosado, J. et al. (2021). Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe. 2021 Feb;2(2):e60-e69. PMID: 33521709.
Lysate
Soulier, A. et al. (2021). Engineering a Novel Bivalent Oral Vaccine against Enteric Fever. Int J Mol Sci. 2021 Mar; 22(6): 3287. PMCID: PMC8005139.
Sheep HRP Antibody
Gogesch, P. et al. (2019). Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel). Sep, 7(3), 104. PMID: 31480520
Rabbit Anti-Sheep IgG (H + L)
Shaw, AM. et al. (2020). Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. Analyst. 2020 July 07: 5638-5646.

Streptococcus

S. Pneumoniae Native Extract
Karakus, E. et al. (2021). Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor. Analytica Chimica Acta. 2021 Oct 16; 1182: 338939.

Liv, L. et al. (2021) “Electrochemical biosensing platform based on hydrogen bonding for detection of the SARS-COV-2 spike antibody,” Analytical and Bioanalytical Chemistry, 414(3), pp. 1313–1322.

Liv, L. and Baş, A. (2022) “Discriminative electrochemical biosensing of Wildtype and Omicron variant of SARS-COV-2 nucleocapsid protein with single platform,” Analytical Biochemistry, 657, p. 114898.

Lokman, Liv. (2021). A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples. Biosens Bioelectron. 2021 Nov 15; 192: 113497. PMCID: PMC8276568.

TBEV NS1
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Albinsson, B. (2018). Distinction Between Serological Responses Following Tick-Borne Encephalitis Virus (TBEV) Infection Vs Vaccination, Sweden 2017. Eurosurveillance. PMID: 29386094

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Girl, P. (2020). Frühsommer-Meningoenzephalitis-Virus ─Der Nutzen von Antikörpern gegen das Nicht-Strukturprotein 1 (NS1) in der Diagnostik. (PhD thesis).

Girl, P. et al. (2020). Tick-borne Encephalitis Virus (TBEV): Non-Structural Protein (NS1) IgG ELISA Differentiating Infection vs. Vaccination Antibody Responses. J Clin Microbiol. Jan. PMID: 31969423

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. Mar 19;257:48-57. PMID: 2956751

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Salat, J. et al. (2020). Tick-Borne Encephalitis Virus Vaccines Contain Non-Structural Protein 1 Antigen and may Elicit NS1-Specific Antibody Responses in Vaccinated Individuals. Vaccines (Basel). Feb 12;8(1). pii: E81. PMID: 32059489

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Tagliabue, G. et al. (2017). A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology. Biochem Biophys Res Commun. Oct 28;492(4):558-564. PMID: 28501619

Trichomonas vaginalis antigen
Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563
Usutu Virus NS1 Protein
Atama, N.C. et al. (2022) “Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model,” One Health, 15, p. 100456.

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

de Bellegarde de Saint Lary, C. et al. (2023) “Assessing West Nile virus (WNV) and Usutu virus (USUV) exposure in bird ringers in the Netherlands: A high-risk group for WNV and USUV infection?,” One Health, 16, p. 100533.

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Saiz, J-C. and Blazquez, A-B. (2017). Usutu Virus: Current Knowledge and Future Perspectives. Virus Adaptation and Treatment.

WNV NS1 Protein
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Beatty, PR. et al. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med. Sep 9;7(304):304ra141. PMID: 26355030

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Conde, JN. et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol. Oct 14;90(21):9570-9581. PMID: 27512066

Glasner, DR. et al. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. Nov 9;13(11):e1006673. PMID: 29121099

Gelanew, T. et al. (2015). Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. Sep 15;222:214-23. PMID: 26070890

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. Jul 14;12(7):e1005738. PMID: 27416066

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Puerta-Guardo, H. et al. (2022) “Flavivirus NS1 triggers tissue-specific disassembly of intercellular junctions leading to barrier dysfunction and vascular leak in a gsk-3β-dependent manner,” Pathogens, 11(6), p. 615.

Roberts, A., Mahari, S. and Gandhi, S. (2022) “Signal enhancing gold nanorods (GNR) and antibody modified electrochemical nanosensor for ultrasensitive detection of Japanese encephalitis virus (JEV) secretory non-structural 1 (NS1) biomarker,” Journal of Electroanalytical Chemistry, 919, p. 116563.

Roberts, A. et al. (2023) “Point‐of‐care detection of Japanese encephalitis virus biomarker in clinical samples using a portable smartphone‐enabled electrochemical ‘Sensit’ device,” Bioengineering & Translational Medicine [Preprint].

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Tagliabue, G. et al. (2017). A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology. Biochem Biophys Res Commun. Oct 28;492(4):558-564. PMID: 28501619

Tran, P.-T.-H. et al. (2022) “Enhanced seroconversion to West Nile virus proteins in mice by West Nile Kunjin replicon virus-like particles expressing glycoproteins from Crimean–Congo hemorrhagic fever virus,” Pathogens, 11(2), p. 233.

WNV Antibodies
Pedraza-Escalon, M. et al. (2020). Isolation and characterization of high anity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. Research Square (preprint).

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

YFV NS1 Protein
Abraham, PR. et al. (2021). Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep. 2021 Dec 8;11(1):23699. PMID: 34880307

Almeida, N.B. et al. (2022) “DNA aptamer selection and construction of an aptasensor based on graphene fets for zika virus NS1 protein detection,” Beilstein Journal of Nanotechnology, 13, pp. 873–881.

Medina-Magües, L.G. et al. (2023) “Immunogenicity and protective activity of mrna vaccine candidates against yellow fever virus in animal models,” npj Vaccines, 8(1).

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. 2018 Mar 19;257:48-57. PMID: 2956751

Gelanew, T. et al. (2015). Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. Sep 15;222:214-23. PMID: 26070890

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Wechsler, M.E. et al. (2022) “Preclinical and clinical experience with dupilumab on the correlates of live attenuated vaccines,” Journal of Allergy and Clinical Immunology: Global, 1(1), pp. 9–15.

Yen, CW. et al. (2015). Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip.7;15(7):1638-41. PMID: 25672590

ZIKV Envelope Protein
Fowler, AM. et al. (2018). Maternally Acquired Zika Antibodies Enhance Dengue Disease Severity in Mice. Cell Host & Microbe. PMID: 30439343

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Ponndorf, D. et al. (2020). Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal. PMID: 33099859

Salazar, V. et al. (2019). Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect Against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports. PMID: 30726740

Valenzuela-Leon, PC. et al. (2022). Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein. Viruses 202214(2), 221.

Wen, J. et al. (2017). Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat Commun. Nov 13;8(1):1459. PMID: 29129917

T.Langerak (2022) Transplacental Zika virus transmission in ex vivo perfused human placentas https://doi.org/10.1371/journal.pntd.0010359

ZIKV NS1 Protein
Afsahi, S. et al. (2018). Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron. 100:85-88. PMID: 28865242

Balmaseda, A. et al. (2017). Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc Natl Acad Sci U S A. Aug 1;114(31):8384-8389. PMID: 28716913

Balmaseda, A. et al. (2018). Comparison of four serological methods and two RT-PCR assays for diagnosis and surveillance of Zika. J Clin Microbiol. Jan 5. pii: JCM.01785-17. doi: 10.1128/JCM.01785-17. [Epub ahead of print]. PMID: 29305550

Bedin, F. et al. (2017). Paper-based point-of-care testing for cost-effective diagnosis of acute flavivirus infections. J Med Virol. Sep;89(9):1520-1527. PMID: 28295400

Bhardwaj, U. and Singh, SK. (2021). Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells. Mol Neurobiol. 2021 Sep 6. PMID: 34487317.

Bosch, I. et al. (2017). Rapid Antigen Tests for Dengue Virus Serotypes and Zika Virus In Patient Serum. Science Translational Medicine. PMID: 28954927

Cardenas, M and Noe, E. (2020). Optimization of Recombinant Flavivirus Antigens for Infection Serology: Towards Syndrome-Based Multiplex Tests. The Open University. Mar 03. (PhD thesis).

Chao, C-H. et al. (2019). Dengue Virus Nonstructural Protein 1 Activate Platelets via Toll-Like Receptor 4, Leading to Thrombocytopenia and Hemorrhage. PLOS Pathogens. PMID: 31009511

Conde, JN. et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol. Oct 14;90(21):9570-9581. PMID: 27512066

Delfin-Riela, T. et al. (2023) “Nanobody-based blocking of binding Elisa for the detection of anti-NS1 zika-virus-specific antibodies in convalescent patients,” Tropical Medicine and Infectious Disease, 8(1), p. 55.

de Puig, H. et al. (2022) “Multiplexed rapid antigen tests developed using multicolored nanoparticles and cross-reactive antibody pairs: Implications for pandemic preparedness,” Nano Today, 47, p. 101669.

Ganganboina, AB. et al. (2021). Cargo encapsulated hepatitis E virus-like particles for anti-HEV antibody detection. Biosens Bioelectron. 2021 Aug 1;185:113261. PMID: 33962156

Henry, P-G. et al. (2020). Zika Virus Nonstructural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas. J Infect Dis. Jan, 221(2), 313-324. PMID: 31250000

Kareinen, L. et al. (2019). Immunoassay for serodiagnosis of Zika virus infection based on time-resolved Förster resonance energy transfer. PLoS One. Jul, 14(7). PMID: 31335898

Katzelnick, LC. et al. Zika virus infection enhances future risk of severe dengue disease. Science. Aug, 369(6507):1123-1128. PMID: 32855339

Lecouturier, V. et al. (2019). Immunogenicity and Protection Conferred by an Optimized Purified Inactivated Zika Vaccine in Mice. Vaccine. May, 37(2), 2679-2686. PMID: 30967310

Lecouturier, V. et al. (2020). An optimized purified inactivated Zika vaccine provides sustained immunogenicity and protection in cynomolgus macaques. NPJ Vaccines. Mar 12;5:19. PMID: 32194996

Limonta, D. et al. (2018). Human Fetal Astrocytes Infected with Zika Virus Exhibit Delayed Apoptosis and Resistance Interferon: Implications for Persistance. Viruses. PMID: 30453621

Margulis, M. et al. (2021). Optical modulation biosensing system for rapid detection of biological targets at low concentrations. Biomedical Optics Express. Vol. 12, Issue 9, pp. 5338-5350 (2021).

Matsanuga, K-I. et al. (2021). High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. 2021 Jun 25;gkab515. PMID: 34169309

Merbah, M. et al. (2020). A high-throughput multiplex assay to characterize flavivirus-specific immunoglobulins. J Immunol Methods. 2020 Oct 3;112874. PMID: 33022219.

Michelson, Y. et al. (2019). Highly Sensitive and Specific Zika Virus Serological Assays Using a Magnetic Modulation Biosensing System. J Infect Dis. Mar, 219(7), 1035-1043. PMID: 30335151

Nascimento, EJM. et al. (2018). Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods. Mar 19;257:48-57. PMID: 2956751

Nascimento, EJM. et al. (2019). Use of a Blockade-of-Binding ELISA and Microneutralization Assay to Evaluate Zika Virus Serostatus in Dengue-Endemic Areas. Am J Trop Med Hyd. Sep 101(3);708-715. PMC6726926

Park, C. et al. (2020). A Simple Method for the Design and Development of Flavivirus NS1 Recombinant Proteins Using an In Silico Approach. Biomed Res Int. Feb 13;2020:3865707. PMID: 32104691

Puerta-Guardo, H. et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports. PMID: 30726741

Puerta-Guardo, et al. (2020). Zika Virus Nonstructural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas. J Infect Dis. Jan 2;221(2):313-324. PMID: 31250000

Rodriguez-Barraquer, et al. (2019). Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science. Feb 363(6427);607-610. PMID: 30733412

Sanchez-Vargas, et al. (2021). Non-structural protein 1-specific antibodies directed against Zika Virus in humans mediate antibody-dependent cellular cytotoxicity. Immunology. PMID: 34056709

Shriver-Lake, LC. et al. (2018). Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports. PMID: 30591706

Shukla, A. et al. (2021). Zika virus NS1 suppresses the innate immune responses via miR-146a in human microglial cells. Int J Biol Macromol. 2021 Nov 16;S0141-8130(21)02459-4. PMID: 34798192

Theillet, G. et al. (2018). Laser-cut paper-based device for the detection of dengue non-structural NS1 protein and specific IgM in human samples. Arch Virol. Mar 10. doi: 10.1007/s00705-018-3776-z. [Epub ahead of print] PMID: 29525973

Ushijima, Y. et al. (2021). Surveillance of the major pathogenic arboviruses of public health concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus infections. BMC Infect Dis. 2021 Mar 17;21(1):265. PMID: 33731022.

Whitehead and Pierson (2019). Effects of Dengue Immunity on Zika Virus Infection. Nature News and Views. Nature 567, 467-468 (2019).

Yeung, J. (2020). Zika Virus Infection Modulates Expression of Regulatory Complement Factors in SH-SY5Y Cells. (Master’s Thesis).

Zhang, B. et al. (2017). Diagnosis of Zika virus infection on a nanotechnology platform. Nat Med. May;23(5):548-550. PMID: 28263312

 

ZIKV Lysate
Martinez-Sobrido, L. and Toral, FA. (2019). New Advances on Zika Virus Research. Viruses. PMID: 30875715

Nasrin, F. et al. (2021). Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. Biosensors (Basel). 2021 Oct 7;11(10):376. PMID: 34677332

Rayner, JO. et al. (2018). Comparative Pathogenesis of Asian and African-Lineage Zika Virus in Indian Rhesus Macaque’s and Development of Non-Human Primate Model Suitable for the Evaluation of New Drugs and Vaccines. Viruses. PMID: 29723973

Seiler, BT. (2019). Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000 Research. PMID: 31275563.

ZIKV VLPs
Awadalkareem, A. et al. (2021). A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. NPJ Vaccines. 2021 Feb 17;6(1):27. PMID: 33597526.

Awadalkareem, A. et al. (2018). Multiplexed FluroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. The Journal of Immunology. PMID: 30413671

Collins, MH. et al. (2019). Human Antibody Response to Zika Targets Type-Specific Quaternary Structure Epitopes. JCI Insight. PMID: 30996133

Lima, TM. et al. (2019). Purification of Flavivirus VLPs by a Two-Step Chomatographic Process. Vaccine. Nov, 37(47), 7061-7069. PMID: 31201056

Ponndorf, D. et al. (2020). Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal. PMID: 33099859

Sanchez-Vargas, et al. (2021). Non-structural protein 1-specific antibodies directed against Zika Virus in humans mediate antibody-dependent cellular cytotoxicity. Immunology. PMID: 34056709

Tsuji, I. et al. (2022) “Somatic hypermutation and framework mutations of variable region contribute to Anti-Zika virus-specific monoclonal antibody binding and function,” Journal of Virology, 96(11).

Valenzuela-Leon, PC. et al. (2022). Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein. Viruses 2022, 14(2), 221.

ZIKV Antibodies
Ganganboina, AK. et al. (2021). Cargo encapsulated Hepatitis E virus-like particles for anti-HEV antibody detection. Biosensors and Bioelectronics. 2021 Apr.

Langerak, T. et al. (2022) “Comparative analysis of in vitro models to study antibody-dependent enhancement of zika virus infection,” Viruses, 14(12), p. 2776.

Langerak, T. et al. (2022) “Transplacental Zika virus transmission in ex vivo perfused human placentas,” PLOS Neglected Tropical Diseases, 16(4).

Michelson, Y. et al. (2019). Highly Sensitive and Specific Zika Virus Serological Assays Using a Magnetic Modulation Biosensing System. J Infect Dis. Mar, 219(7), 1035-1043. PMID: 30335151

Mumtaz, N. et al. (2022) “Zika virus alters osteogenic lineage progression of human mesenchymal stromal cells,” Journal of Cellular Physiology, 238(2), pp. 379–392.

Mumtaz, N. et al. (2022) “Zika virus infects human osteoclasts and blocks differentiation and bone resorption,” Emerging Microbes & Infections, 11(1), pp. 1621–1634.

Nasrin, F. et al. (2021). Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. Biosensors, 11(10), 376. MDPI.

Pedraza-Escalon, M. et al. (2020). Isolation and characterization of high anity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. Research Square (preprint).

Ponndorf, D. et al. (2020). Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal. PMID: 33099859

Tuekprakhon, A. et al. (2018). Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One. PMID: 30557365

Ward, D. et al. (2022) “Sero-Epidemiological Study of Arbovirus Infection Following the 2015–2016 zika virus outbreak in Cabo Verde,” Scientific Reports, 12(1).

ZIKV ELISA
Kim, YC. et al. (2021). Development of Zika NS1 ELISA methodology for seroprevalence detection in a cohort of Mexican patients in an endemic region. Journal of Clinical Virology Plus. 1(3).

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

13 + 13 =