0 Items
Select Page

Paramyxovirus Receptors

The Native Antigen Company manufacturers highly purified Paramyxovirus receptors using state-of-the-art expression and purification techniques. On request we can also undertake custom preparation of recombinant and native proteins for a broad range of disease states.

Paramyxovirus Receptors Background

Paramyxoviruses are negative-sense, single-stranded RNA viruses whose members include Rubulavirus, Avulavirus, Respirovirus, Pneumovirus, Henipavirus and Metapneumovirus. Paramyxoviruses cause a variety of human diseases including mumps, measles, which caused around 733,000 deaths in 2000 and respiratory syncytial virus (RSV), which is the major cause of bronchiolitis and pneumonia in infants and children. The human parainfluenza viruses (HPIV) are the second most common causes of respiratory tract disease in infants and children. More recently, Hendra virus (HeV) and Nipah virus (NiV) in the genus Henipavirus have emerged in humans and livestock in Australia and Southeast Asia. Both viruses are contagious, highly virulent, and capable of infecting a number of mammalian species, causing potentially fatal disease.

The virions of this family consist of a lipid envelope surrounding a nucleocapsid, and the envelope is derived directly from the host cell plasma membrane by budding, and contains two or three transmembrane glycoproteins. Virions attach via these glycoproteins to cellular sialoglycoproteins or glycolipid receptors. The F protein then mediates fusion of the viral envelope with the plasma membranes at physiological pH. The liberated nucleocapsid remains intact, and all three associated proteins (N, P, and L) are required for the transcription of the incoming viral genome. Paramyxoviruses replicate within the cytoplasm of infected cells.

The capacity of an attachment glycoprotein to specifically target receptors expressed on the host cell surface is a critical determinant of paramyxoviral host tropism. Paramyxovirus attachment glycoproteins are type-II membrane proteins composed of an N-terminal cytoplasmic and transmembrane region, a stalk domain, and a receptor-binding domain. The receptor-binding domain forms a six-bladed β-propeller fold and is the key determinant of host receptor specificity. These glycoproteins have been divided into three major groups: hemagglutinin (H), hemagglutinin-neuraminidase (HN), and attachment glycoproteins (G).

Cell surface receptors utilized by paramyxoviruses can be either protein or carbohydrate. HN glycoproteins encode a structurally well-conserved binding motif, which recognizes sialic acid (N-acetylneuraminic acid), a terminal saccharide present on cellular glycoproteins and glycolipids. Because of the abundance of sialic acid at the cell surface of vertebrates, it is likely that factors other than receptor specificity may play a major role in the host tropism of HN-bearing viruses. H and G glycoproteins, on the other hand, recognize proteinaceous cell surface receptors, such as SLAM/F1 (signaling lymphocytic activation molecule family member 1, CD150) and nectin-4 for morbilliviruses and ephrinB2 and ephrinB3 for NiV and HeV. Henipaviruses exhibit a broad host range, with natural infections observed in bats, horses, pigs, cats, dogs, goats, and humans. The usage of the cell surface receptor ephrinB2, which is highly conserved across vertebrate species, is associated with the wide host tropism. Moreover, the expression of ephrinB2 on range of cell types allows for their efficient systemic dissemination. NiV was included in the World Health Organization (WHO) list of the seven pathogens it deems most require urgent research and development in order to mitigate potential public health emergencies.

References

  • Zeltina et al. (2016) Emerging Paramyxoviruses: Receptor Tropism and Zoonotic Potential. PLoS Pathog 12(2).
  • Dutch RE (2010) Entry and Fusion of Emerging Paramyxoviruses. PLoS Pathog 6(6).
  • WHO. Annual review of diseases prioritized under the Research and Development Blueprint. 6-7 February 2018 Geneva, Switzerland.

Paramyxovirus Receptors

We are pleased to offer this highly purified cell surface receptor protein shown to be used by a wide range of Paramyxoviruses.

 

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Why We Need Antigen and Antibody Tests for COVID-19

RT-PCR is the workhorse of viral diagnosis and has been invaluable in COVID-19 case confirmation and isolation guidance. However, while fast and sensitive, PCR suffers from some inherent drawbacks that limit it to diagnosis during the acute phase of infection. To...

Gonorrhea: What’s Currently in the Clinical Pipeline?

This article was written by our friends at Infectious Diseases Hub, a free-to-access website that aims to deliver up-to-date, essential research and information on all aspects of microbiology, virology, mycology and parasitology – from bench to bedside....

Novel Coronavirus Antigens Now Available

The Native Antigen Company is now offering recombinant S1 and S2 glycoproteins for SARS-CoV-2 (Covid-19) in response to urgent demand. These reagents are suitable for use in basic research and the development of diagnostics and vaccines.These antigens have been...

The Why and How of Protein Conjugation

In this blog, Lead Assay Development Scientist, Toni Ertl discusses the basics of protein conjugation and introduces our new range of conjugation kits for the labelling of antigens and antibodies.Detecting Proteins If you’re trying to detect or measure the presence...

Going Viral: Why We Need New Diagnostics For a Safe and Effective Dengue Vaccine

This article is taken from European Biopharmaceutical Review January 2020, pages 44-46. © Samedan Ltd.The Dengue VirusDengue is the world’s most prevalent and consequential arboviral disease. Current estimates indicate that as many as 390 million dengue infections...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

6 + 2 =

Live Customer Feedback

Join our mailing list

* indicates required