0 Items
Select Page

Mayaro

Mayaro fever is an emerging acute viral disease endemic in Central and South America. Mayaro virus (MAYV) is classified in the Semliki Forest virus antigenic complex and shares similarities with the Chikungunya alphavirus and Dengue virus, flavivirus.

The Native Antigen Company has developed a number of mammalian-expressed recombinant proteins from Mayaro virus, which may help in developing specific immunoassays for infection.

Mayaro Virus Background

Mayaro virus (MAYV) is a positive-sense, single-stranded RNA virus, belonging to the alphavirus genus and togaviridae family. It is a member of the Semliki Forest antigenic sero-complex, a serological group within the alphavirus genus, and is closely related to Chikungunya virus (CHIKV) (Esposito, D.L.A).

MAYV is an arthropod-borne virus, thought to be transmitted by Haemagogus mosquitoes to forest-dwelling non-human primates and migratory birds, which act as natural reservoirs for the virus. Humans can be infected when working or living in forested areas where MAYV is prevalent. Studies suggest that MAYV may be also transmitted by the Aedes aegypti mosquito, raising concerns that the virus could spread to urban areas where A. aegypti are widespread.

In humans, Mayaro virus causes an acute febrile illness which presents with a range of non-specific clinical symptoms including headache, myalgia, rash, diarrhoea, nausea and severe persistent joint pain, which are similar to symptoms of Dengue fever and Chikungunya. Since it was first isolated in Trinidad in 1954, MAYV has caused major outbreaks in rural areas of Brazil and sporadic cases in Central and South American countries. However, reports suggest that cases of MAYV infection may be higher than previously documented, owing to similarities between symptoms of Mayaro fever, Dengue fever, Chikungunya and other febrile tropical diseases (CDC).

MAYV is recognised as an emerging virus with the potential to cause a major epidemic in Central and South American countries. Currently, there is no licensed prophylactic vaccine or specific treatment for MAYV fever. Standard prevention of MAYV is through vector control measures to reduce transmission of the virus. Given the geographical distribution of MAYV and the similarity of the symptoms of Mayaro fever to other infections caused by other arboviruses such Dengue fever, Chikungunya and Zika virus, it is considered important to be able to differentiate diagnostically between these arboviral diseases (CDC). Diagnosis of MAYV infection may be achieved by serological testing for MAYV-specific IgM antibodies, using enzyme-linked immunoassays. However, cross-reactivity with related viruses is a notorious issue that reduces assay sensitivity and hampers accurate diagnosis (Figueiredo, ML).

References

  1. Esposito DLA and Fonseca BALD (2017). Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? Braz J Infect Dis.21(5):540-544
  2. Center for Disease Control and Prevention: Emerging infectious diseases. Brunini, S et al (2017). High Frequency of Mayaro Virus IgM among Febrile Patients, Central Brazil. Research Letter. Volume 23, Number 6—June
  3. Figueiredo ML and Figueiredo LT (2014). Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop.47(6):677-83

Mayaro Virus Antigens

Utilising our proprietary mammalian cell expression system, we have prepared a number of recombinant Mayaro virus antigens. These include Mayaro virus-like particles (comprising E1, E2 and Capsid proteins) and soluble E2 envelope protein in a number of formats, including His-tagged and Fc-tagged. Our Mayaro antigens are  valuable for the development of immunoassays that can distinguish Mayaro infection from Chikungunya infection.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Zika Prevalence in Suriname – an insight into assay cross-reactivity

A recent study published by Langerak et al tested for the seroprevalence of Zika virus in Suriname populations and evaluated the comparative effectiveness of using a commercial ELISA and a standard Virus Neutralisation Assay. Here we discuss the study, its results,...

What should you call your favourite virus?

The International Committee on Taxonomy of Viruses (ICTV) meet regularly to ensure the taxonomy of viruses is kept logical and up-to-date in the face of an ever-increasing number of new viruses and genome sequences; discussed in here in Nature. This sometimes results...

Overcoming Zika-Dengue cross-reactivity: the highly specific immunoassays your lab needs

In the global battle against Zika virus, serological cross-reactivity with Dengue is a major challenge for academics, epidemiologists and pharmaceutical companies alike. Novel immunoassays can now overcome this problem and could prove a real game-changer in Zika...

The Right Tools for Rubella

Rubella remains a significant pathogen worldwide, with 100,000 cases of congenital rubella syndrome estimated to occur every year. Vaccines to Rubella are highly safe and have effectively eliminated endemic infection in many developed countries, yet inadequate...

Visualising viral infection with immunofluorescence microscopy

Following the latest immunofluoresence data for our Zika and Dengue antibodies, we’ve invited VRS to write a short blog one of their areas of expertise: The applications of immunofluorescence microscopy in studying viruses.   A lot of what we know about biology...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

13 + 2 =

Live Customer Feedback