0 Items
Select Page

Mayaro

Mayaro fever is an emerging acute viral disease endemic in Central and South America. Mayaro virus (MAYV) is classified in the Semliki Forest virus antigenic complex and shares similarities with the Chikungunya alphavirus and Dengue virus, flavivirus.

The Native Antigen Company has developed a number of mammalian-expressed recombinant proteins from Mayaro virus, which may help in developing specific immunoassays for infection.

Mayaro Virus Background

Mayaro virus (MAYV) is a positive-sense, single-stranded RNA virus, belonging to the alphavirus genus and togaviridae family. It is a member of the Semliki Forest antigenic sero-complex, a serological group within the alphavirus genus, and is closely related to Chikungunya virus (CHIKV) (Esposito, D.L.A).

MAYV is an arthropod-borne virus, thought to be transmitted by Haemagogus mosquitoes to forest-dwelling non-human primates and migratory birds, which act as natural reservoirs for the virus. Humans can be infected when working or living in forested areas where MAYV is prevalent. Studies suggest that MAYV may be also transmitted by the Aedes aegypti mosquito, raising concerns that the virus could spread to urban areas where A. aegypti are widespread.

In humans, Mayaro virus causes an acute febrile illness which presents with a range of non-specific clinical symptoms including headache, myalgia, rash, diarrhoea, nausea and severe persistent joint pain, which are similar to symptoms of Dengue fever and Chikungunya. Since it was first isolated in Trinidad in 1954, MAYV has caused major outbreaks in rural areas of Brazil and sporadic cases in Central and South American countries. However, reports suggest that cases of MAYV infection may be higher than previously documented, owing to similarities between symptoms of Mayaro fever, Dengue fever, Chikungunya and other febrile tropical diseases (CDC).

MAYV is recognised as an emerging virus with the potential to cause a major epidemic in Central and South American countries. Currently, there is no licensed prophylactic vaccine or specific treatment for MAYV fever. Standard prevention of MAYV is through vector control measures to reduce transmission of the virus. Given the geographical distribution of MAYV and the similarity of the symptoms of Mayaro fever to other infections caused by other arboviruses such Dengue fever, Chikungunya and Zika virus, it is considered important to be able to differentiate diagnostically between these arboviral diseases (CDC). Diagnosis of MAYV infection may be achieved by serological testing for MAYV-specific IgM antibodies, using enzyme-linked immunoassays. However, cross-reactivity with related viruses is a notorious issue that reduces assay sensitivity and hampers accurate diagnosis (Figueiredo, ML).

References

  1. Esposito DLA and Fonseca BALD (2017). Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? Braz J Infect Dis.21(5):540-544
  2. Center for Disease Control and Prevention: Emerging infectious diseases. Brunini, S et al (2017). High Frequency of Mayaro Virus IgM among Febrile Patients, Central Brazil. Research Letter. Volume 23, Number 6—June
  3. Figueiredo ML and Figueiredo LT (2014). Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop.47(6):677-83

Mayaro Virus Antigens

Utilising our proprietary mammalian cell expression system, we have prepared a number of recombinant Mayaro virus antigens. These include Mayaro virus-like particles (comprising E1, E2 and Capsid proteins) and soluble E2 envelope protein in a number of formats, including His-tagged and Fc-tagged. Our Mayaro antigens are  valuable for the development of immunoassays that can distinguish Mayaro infection from Chikungunya infection.

Mayaro Virus Antibodies

We offer a panel of monoclonal antibodies specific to Mayaro virus. Our Mayaro virus antibodies recognise glycoprotein E1 and can be used in a wide range of applications, including assay development as matched pairs in ELISA.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Diagnosing HIV in resource-limited settings

In this blog, we discuss the need for improved point-of-care (PoC) diagnostics for HIV and present the virus's cellular mechanism to illustrate our new range of HIV antigens and antibodies. HIV in the developed world On June 5th 1981 in Los Angeles, California, 5...

Our Product Pipeline

If you’ve been following us on social media recently, you might have noticed that we’ve been releasing a lot of new antigens and antibodies. In this blog, we explain how we use the WHO R&D Blueprint to guide our product development and present some highlights from...

From Outbreak to Epidemic: A Short History of The Ebola Virus

In the first of a two-part series, we discuss the history of the Ebola virus up to the ongoing outbreak in the Democratic Republic of Congo, and why this disease has been so challenging to fight. The 2014/15 epidemic In the summer of 2014, the world watched as the...

ELISA Formats for Infectious Disease Diagnostics

The field of diagnostics is rapidly developing, yet ELISA and PCR methods remain the most commonly used techniques in the diagnosis of bacterial and viral infections. In this blog, we discuss the advantages of using serological methods over molecular, PCR-based...

The world’s most extensive range of NS1-specific antibodies for flavivirus research

The Native Antigen Company first gained prominence in 2016, when it developed highly pure Zika virus NS1 protein during the 2015/2016 epidemic. Since then, the company has developed an extensive range of highly specific antigens, antibodies and immunoassays for...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

2 + 4 =

Live Customer Feedback

Join our mailing list

* indicates required