+44 (0)1865 595230
0 Items

Vaccinia

Vaccinia virus is known for its use in smallpox vaccination, but following the eradication of smallpox, routine vaccination is no-longer performed. Recent interest in Vaccinia has centred on its potential use as a vector for immunization against other viruses, with a focus on developing less virulent strains than those used for vaccination against smallpox.

The Native Antigen Company offers a recombinant Vaccinia protein that demonstrates biological activity as a Type I IFN receptor.

Vaccinia Virus Background

Vaccinia virus is a large, complex, enveloped virus, belonging to the Poxvirus family. Poxviruses are unique among DNA viruses, as they replicate only in the cytoplasm of the host cell, outside of the nucleus. Therefore, a large genome is required for encoding various enzymes and proteins involved in viral DNA replication and gene transcription. The close similarity of the Vaccinia virus to smallpox virus led to its use as a vaccination to prevent smallpox. Infection by Vaccinia in healthy individuals is generally asymptomatic, but may present with a mild fever and rash. It does, however, produce lasting immunity against other pox viruses, including smallpox. Vaccinia virus has therefore been used as a live vaccine against smallpox, and although now not widely used, it remains in use for healthcare workers, the US military, and researchers working with pox viruses. The use of the vaccine is associated with very rare but severe side-effects, primarily in immunocompromised individuals.

Vaccinia Antigens

We offer recombinant Vaccinia virus B18R protein, which contains two Ig-like C2-type domains and one Ig-like V-type domain. Vaccinia virus B18R exists in a soluble and membrane-bound form. As a type I IFN receptor, B18R counteracts the antiviral effects of host IFN-alpha/beta. The B18R protein also acts as a soluble IFN-alpha receptor and thus, inhibits the interaction between host IFN-alpha and its receptor. B18R was recently shown to enable increased cell viability during RNA transfection protocols, designed to convert human somatic donor cells into iPSCs.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Challenges to Effective Yellow Fever Diagnostics

Yellow fever is a haemorrhagic viral disease, transmitted by infected mosquitos in Africa and South America. While an effective vaccine is available, inadequate vaccination of endemic areas has made diagnostics a necessity to controlling ongoing outbreaks. However,...

Five Methods You Can Use to Overcome Zika-Dengue Cross-Reactivity

Cross-reactivity between the Zika and Dengue viruses in serological assays is one of the biggest challenges faced by the epidemiologists, academics and pharmaceutical companies trying to control the Zika epidemic, as it brings the quality and reliability of diagnostic...

Why Zika virus’s cross-reactivity with Dengue might be hampering your research

Given the impact of Zika, it’s no surprise that a global contingent of epidemiologists, academic researchers, and pharmaceutical companies are striving to develop effective disease control measures and treatments. One challenge currently hindering the...

How The Native Antigen Company responds to the WHO list of priority infectious diseases

In 2015, a broad group of public health and science experts gathered in Geneva to discuss emerging infectious diseases that are likely to cause future severe epidemics and public health emergencies. Organised by the World Health Organization (WHO), their aim was to...

Native Antigen release a panel of serotype specific monoclonal antibodies

  There are four distinct serotypes of Dengue Virus circulating around the world, causing Dengue fever infection which is the most important worldwide arboviral disease. There are nearly 400 million cases of Dengue annually, and around 25% present with so called...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

2 + 1 =

Live Customer Feedback