0 Items
Select Page

Influenza

Influenza, commonly referred to as ‘the flu’, is a highly contagious respiratory RNA virus of the Orthomyxoviridae family. Influenza infection is most common during the winter months, typically spreading through respiratory droplets when a person who has the flu sneezes or coughs. Influenza A can be found in many species, including humans, birds, and pigs. Due to the breadth of potential hosts, influenza A viruses are very diverse and capable of causing pandemics. Influenza B and C are typically only found in humans.

The Native Antigen Company offer a range of mammalian-expressed recombinant influenza antigens from a number of different sub-types of Influenza A, along with monoclonal influenza antibodies that can readily distinguish between infection with Influenza A and B.

Influenza Background

Influenza virus is a type of enveloped, segmented, negative-sense, single-stranded RNA virus of the Orthomyxoviridae family. There are three major antigenic types of influenza virus that are clinically relevant to humans. These are classified as Flu A, B and C. Flu A viruses affect humans and bird populations, whilst Flu B and C only infect humans. Flu A viruses are the most virulent human pathogens among the three influenza types and are the predominant cause of seasonal and pandemic influenza (Bouvier, NM).

Flu A viruses are further divided into subtypes based on the expression and combination of two envelope glycoproteins called haemagglutinin (H, also referred to as HA) and neuraminidase (N), which are important targets for the immune system. Flu A viruses undergo high rates of mutation and gene rearrangement which lead to antigenic variations of these glycoproteins. There are 18 H subtypes and 11 N subtypes recognised to date (CDC). The subtypes currently circulating among the human population are Flu A (H1N1) and Flu A (H3N2) (WHO).

In most healthy individuals, Flu A causes a self-limiting respiratory illness, but the virus can cause severe illness or death in the elderly and high-risk patients. Transmission of the virus between humans is predominantly the result of contact with contaminated airborne droplets, from an infected individual which are inhaled and enter the respiratory tract, but can also be spread by contaminated hands or surfaces. In healthy individuals, Influenza B causes a self-limiting respiratory illness. However, Influenza B can cause severe illness and hospitalization in the young, the elderly and high-risk patients.

Effective vaccines are available for individuals at risk of developing severe disease, but must be developed and administered annually due to the rapidly-evolving nature of the virus. Quadrivalent vaccines that include two subtypes of Influenza A and B, are replacing trivalent vaccines in an attempt to provide greater protection against Influenza B viral infections (WHO)

References

  1. Bouvier, N.M. and Palese, P. (2008). The Biology of Influenza viruses. Vaccine.26(Suppl 4): D49–D53.
  2. Centers for Disease Control and Prevention: Influenza type A viruses
  3. World Health Organization: Influenza (seasonal)

Influenza Antigens

In order to support ongoing research into differentiating Influenza A from Influenza B, The Native Antigen Company offers a range of mammalian-expressed recombinant influenza proteins from a number of different sub-types of Influenza A, along with monoclonal antibodies that can distinguish between infection with Influenza A and B. These include monoclonal antibodies that are highly specific to each family, and show no cross-reactivity with other common respiratory viruses including adenovirus and respiratory syncytial virus.

Influenza Antibodies

In order to assist with the differentiation of Influenza A from Influenza B, we offer monoclonal antibodies that are highly specific for each family, and additionally show no cross-reactivity with other common respiratory viruses including adenovirus and respiratory syncytial virus.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Going Viral: Why We Need New Diagnostics For a Safe and Effective Dengue Vaccine

This article is taken from European Biopharmaceutical Review January 2020, pages 44-46. © Samedan Ltd.The Dengue VirusDengue is the world’s most prevalent and consequential arboviral disease. Current estimates indicate that as many as 390 million dengue infections...

Why We Need New Diagnostics for the Zika Virus

This article has been published in Volume 2, Issue 3 of the IBI journal.While Zika is no longer in the public eye, it hasn’t vanished. Recent outbreaks across Asia and Africa are reminders that Zika is alive and well, and with no effective countermeasures...

Clostridium difficile Toxins: The Nuts and Bolts

In this blog, we describe the mechanisms of action of the Clostridium difficile A and B toxins, and discuss their use in research and medicine. The Native Antigen Company provides biologically active C. diff toxins, as well as inactivated toxoids for a range of...

Where Are We At with CMV Vaccine Development?

In this blog, we discuss the need for a CMV vaccine, the current vaccine strategies that are in development, and introduce our range of CMV antigens and antibodies.Cytomegalovirus The human Cytomegalovirus (CMV) is an enveloped, icosahedral 150-200nm pleomorphic...

Paper Synopsis: Measles Induces Immune Amnesia

In the midst of widespread concern about growing anti-vaccination sentiments, worldwide, a study published this month suggests that Measles virus infection can also ablate acquired immunity to other diseases. In this blog, we introduce the concept of immune amnesia,...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

10 + 8 =

Live Customer Feedback

Join our mailing list

* indicates required