0 Items
Select Page

Influenza

Influenza, commonly referred to as ‘the flu’, is a highly contagious respiratory RNA virus of the Orthomyxoviridae family. Influenza infection is most common during the winter months, typically spreading through respiratory droplets when a person who has the flu sneezes or coughs. Influenza A can be found in many species, including humans, birds, and pigs. Due to the breadth of potential hosts, influenza A viruses are very diverse and capable of causing pandemics. Influenza B and C are typically only found in humans.

The Native Antigen Company offer a range of mammalian-expressed recombinant influenza antigens from a number of different sub-types of Influenza A, along with monoclonal influenza antibodies that can readily distinguish between infection with Influenza A and B.

Influenza Background

Influenza virus is a type of enveloped, segmented, negative-sense, single-stranded RNA virus of the Orthomyxoviridae family. There are three major antigenic types of influenza virus that are clinically relevant to humans. These are classified as Flu A, B and C. Flu A viruses affect humans and bird populations, whilst Flu B and C only infect humans. Flu A viruses are the most virulent human pathogens among the three influenza types and are the predominant cause of seasonal and pandemic influenza (Bouvier, NM).

Flu A viruses are further divided into subtypes based on the expression and combination of two envelope glycoproteins called haemagglutinin (H, also referred to as HA) and neuraminidase (N), which are important targets for the immune system. Flu A viruses undergo high rates of mutation and gene rearrangement which lead to antigenic variations of these glycoproteins. There are 18 H subtypes and 11 N subtypes recognised to date (CDC). The subtypes currently circulating among the human population are Flu A (H1N1) and Flu A (H3N2) (WHO).

In most healthy individuals, Flu A causes a self-limiting respiratory illness, but the virus can cause severe illness or death in the elderly and high-risk patients. Transmission of the virus between humans is predominantly the result of contact with contaminated airborne droplets, from an infected individual which are inhaled and enter the respiratory tract, but can also be spread by contaminated hands or surfaces. In healthy individuals, Influenza B causes a self-limiting respiratory illness. However, Influenza B can cause severe illness and hospitalization in the young, the elderly and high-risk patients.

Effective vaccines are available for individuals at risk of developing severe disease, but must be developed and administered annually due to the rapidly-evolving nature of the virus. Quadrivalent vaccines that include two subtypes of Influenza A and B, are replacing trivalent vaccines in an attempt to provide greater protection against Influenza B viral infections (WHO)

References

  1. Bouvier, N.M. and Palese, P. (2008). The Biology of Influenza viruses. Vaccine.26(Suppl 4): D49–D53.
  2. Centers for Disease Control and Prevention: Influenza type A viruses
  3. World Health Organization: Influenza (seasonal)

Influenza Antigens

In order to support ongoing research into differentiating Influenza A from Influenza B, The Native Antigen Company offers a range of mammalian-expressed recombinant influenza proteins from a number of different sub-types of Influenza A, along with monoclonal antibodies that can distinguish between infection with Influenza A and B. These include monoclonal antibodies that are highly specific to each family, and show no cross-reactivity with other common respiratory viruses including adenovirus and respiratory syncytial virus.

Influenza Antibodies

In order to assist with the differentiation of Influenza A from Influenza B, we offer monoclonal antibodies that are highly specific for each family, and additionally show no cross-reactivity with other common respiratory viruses including adenovirus and respiratory syncytial virus.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Diagnosing HIV in resource-limited settings

In this blog, we discuss the need for improved point-of-care (PoC) diagnostics for HIV and present the virus's cellular mechanism to illustrate our new range of HIV antigens and antibodies. HIV in the developed world On June 5th 1981 in Los Angeles, California, 5...

Our Product Pipeline

If you’ve been following us on social media recently, you might have noticed that we’ve been releasing a lot of new antigens and antibodies. In this blog, we explain how we use the WHO R&D Blueprint to guide our product development and present some highlights from...

From Outbreak to Epidemic: A Short History of The Ebola Virus

In the first of a two-part series, we discuss the history of the Ebola virus up to the ongoing outbreak in the Democratic Republic of Congo, and why this disease has been so challenging to fight. The 2014/15 epidemic In the summer of 2014, the world watched as the...

ELISA Formats for Infectious Disease Diagnostics

The field of diagnostics is rapidly developing, yet ELISA and PCR methods remain the most commonly used techniques in the diagnosis of bacterial and viral infections. In this blog, we discuss the advantages of using serological methods over molecular, PCR-based...

The world’s most extensive range of NS1-specific antibodies for flavivirus research

The Native Antigen Company first gained prominence in 2016, when it developed highly pure Zika virus NS1 protein during the 2015/2016 epidemic. Since then, the company has developed an extensive range of highly specific antigens, antibodies and immunoassays for...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

15 + 14 =

Live Customer Feedback

Join our mailing list

* indicates required