+44 (0)1865 595230
0 Items

HIV

HIV continues to be a major global public health issue, having claimed more than 35 million lives as of 2018. In 2017, 940 000 people died from HIV-related causes globally. There were approximately 36.9 million people living with HIV by the end of 2017, with 1.8 million people becoming newly infected in 2017 globally (WHO).

To support continuing research into HIV, The Native Antigen Company have developed a panel of recombinant gp120 proteins for different strains of HIV.

HIV Background

Human immunodeficiency virus (HIV) is an enveloped, single-stranded virus and member of the genus Lentivirus and Retroviridae family. Two types of HIV are recognised: HIV-type 1, responsible for most HIV infections globally and HIV-type 2, which is restricted to some regions of Africa.

HIV-1 viruses may be further divided into groups M, N, O and P. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Within the M group of HIV-1 there are a number of genetically distinct sub-types (known as clades). Different subtypes can also combine genetic material to form a hybrid virus or ‘circulating recombinant form’ (CRF). Subtype B is the most common in the Americas and Western Europe, whilst subtype C is the predominant form in Africa and India. Most research has been carried out on subtype B, although it accounts for only 12% of infections worldwide.

Human Immunodeficiency Virus is transmitted from person-to-person through contact with contaminated blood, seminal fluid, vaginal secretions, rectal fluids and breast milk. HIV particles can be detected in the blood 10-12 days after infection. Characteristics of HIV infection vary and may include flu-like symptoms, fever, arthralgia, lymphadenopathy, pharyngitis, weight loss and general malaise. An asymptomatic phase follows the acute phase of HIV infection. During this phase, the effects of HIV infection continue resulting in a decrease of CD4+ T-cell populations and impairment of the immune system. Seroconversion is estimated to occur between 3-5 weeks after infection. (Fanales-Belasio, E. et al).

HIV targets cells of the host’s immune system, including circulating T-cells, precursor T-cells in the bone marrow and thymus, dendritic cells, macrophages and monocytes, eosinophils and microglia cells of the central nervous system. The HIV gp120 envelope glycoprotein enables the virus to enter host target cells by interacting with CD4 – a cell surface glycoprotein. Chemokine receptors have also been identified, primarily CXCR4 and CCR5, which act as co-receptors for viral entry (Wilen, C.B. et al).

In the absence of treatment, HIV infection can progress further, resulting in a decrease in T-cell numbers and the development of Acquired Immunodeficiency Syndrome (AIDS). AIDS renders an individual susceptible to a plethora of opportunistic infections, including Microcystis carinii, Candida albicans, Cytomegalovirus and Herpes zoster, which are life-threatening to those infected. (Fanales-Belasio, E. et al). Effective antiretroviral therapy (ART) is widely available for the treatment of HIV infection. In 2016, approximately 19.5 million people worldwide were reported to be receiving ART, resulting in significant reductions in mortality, in both children and adults (UNAIDS factsheet).

HIV Antigens

The Native Antigen Company offers a panel of recombinant HIV gp120 proteins, expressed in our mammalian cell system to ensure correct folding and glycosylation. Our HIV antigens are available from different HIV-1 sub-types, allowing researchers to study the differing behaviours of the sub-types and associated activity of gp120.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Challenges to Effective Yellow Fever Diagnostics

Yellow fever is a haemorrhagic viral disease, transmitted by infected mosquitos in Africa and South America. While an effective vaccine is available, inadequate vaccination of endemic areas has made diagnostics a necessity to controlling ongoing outbreaks. However,...

Five Methods You Can Use to Overcome Zika-Dengue Cross-Reactivity

Cross-reactivity between the Zika and Dengue viruses in serological assays is one of the biggest challenges faced by the epidemiologists, academics and pharmaceutical companies trying to control the Zika epidemic, as it brings the quality and reliability of diagnostic...

Why Zika virus’s cross-reactivity with Dengue might be hampering your research

Given the impact of Zika, it’s no surprise that a global contingent of epidemiologists, academic researchers, and pharmaceutical companies are striving to develop effective disease control measures and treatments. One challenge currently hindering the...

How The Native Antigen Company responds to the WHO list of priority infectious diseases

In 2015, a broad group of public health and science experts gathered in Geneva to discuss emerging infectious diseases that are likely to cause future severe epidemics and public health emergencies. Organised by the World Health Organization (WHO), their aim was to...

Native Antigen release a panel of serotype specific monoclonal antibodies

  There are four distinct serotypes of Dengue Virus circulating around the world, causing Dengue fever infection which is the most important worldwide arboviral disease. There are nearly 400 million cases of Dengue annually, and around 25% present with so called...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

14 + 15 =

Live Customer Feedback