0 Items
Select Page

Human Immunodeficiency Virus

Human Immunodeficiency Virus (HIV) continues to be a major global public health issue, having claimed more than 35 million lives as of 2018. In 2017, 940 000 people died from HIV-related causes globally. There were approximately 36.9 million people living with HIV by the end of 2017, with 1.8 million people becoming newly infected in 2017 globally (WHO).

To support continuing research into HIV, The Native Antigen Company have developed a panel of recombinant proteins and antibodies for different strains of HIV.

HIV Background

Human immunodeficiency virus (HIV) is an enveloped, single-stranded virus and member of the genus Lentivirus and Retroviridae family. Two types of HIV are recognised: HIV-type 1, responsible for most HIV infections globally and HIV-type 2, which is restricted to some regions of Africa.

HIV-1 viruses may be further divided into groups M, N, O and P. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Within the M group of HIV-1 there are a number of genetically distinct sub-types (known as clades). Different subtypes can also combine genetic material to form a hybrid virus or ‘circulating recombinant form’ (CRF). Subtype B is the most common in the Americas and Western Europe, whilst subtype C is the predominant form in Africa and India. Most research has been carried out on subtype B, although it accounts for only 12% of infections worldwide.

Human Immunodeficiency Virus is transmitted from person-to-person through contact with contaminated blood, seminal fluid, vaginal secretions, rectal fluids and breast milk. HIV particles can be detected in the blood 10-12 days after infection. Characteristics of HIV infection vary and may include flu-like symptoms, fever, arthralgia, lymphadenopathy, pharyngitis, weight loss and general malaise. An asymptomatic phase follows the acute phase of HIV infection. During this phase, the effects of HIV infection continue resulting in a decrease of CD4+ T-cell populations and impairment of the immune system. Seroconversion is estimated to occur between 3-5 weeks after infection. (Fanales-Belasio, E. et al).

HIV targets cells of the host’s immune system, including circulating T-cells, precursor T-cells in the bone marrow and thymus, dendritic cells, macrophages and monocytes, eosinophils and microglia cells of the central nervous system. The HIV gp120 envelope glycoprotein enables the virus to enter host target cells by interacting with CD4 – a cell surface glycoprotein. Chemokine receptors have also been identified, primarily CXCR4 and CCR5, which act as co-receptors for viral entry (Wilen, C.B. et al).

In the absence of treatment, HIV infection can progress further, resulting in a decrease in T-cell numbers and the development of Acquired Immunodeficiency Syndrome (AIDS). AIDS renders an individual susceptible to a plethora of opportunistic infections, including Microcystis carinii, Candida albicans, Cytomegalovirus and Herpes zoster, which are life-threatening to those infected. (Fanales-Belasio, E. et al). Effective antiretroviral therapy (ART) is widely available for the treatment of HIV infection. In 2016, approximately 19.5 million people worldwide were reported to be receiving ART, resulting in significant reductions in mortality, in both children and adults (UNAIDS factsheet).

HIV Antigens

The Native Antigen Company offers a panel of recombinant HIV gp120 proteins, expressed in our mammalian cell system to ensure correct folding and glycosylation. Our HIV antigens are available from different HIV-1 sub-types, allowing researchers to study the differing behaviours of the sub-types and associated activity of a range of proteins.

HIV Antibodies

The Native Antigen Company offers a selection of HIV antibodies allowing you to pursue a broad range of R&D activities, including assay development and vaccine research.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Achieving Diagnostic Specificity with Dengue Envelope Domain III

In this blog, we discuss the structure and function of Flavivirus Envelope protein, its ability to elicit a broad range of antibody responses, and present our new range of Dengue virus Envelope DIII proteins for diagnostic and vaccine development.Envelope Protein: A...

Coronaviruses: The Next Disease X?

For much of their known history, the coronaviruses were regarded as relatively benign pathogens with little potential to cause human harm. However, the emergence of SARS and MERS in recent decades has brought coronaviruses into the global spotlight. In this blog we...

Legionella Click Chemistry

In this blog, we introduce our new set of click chemistry reagents for the specific visualisation of Legionella and describe their applications for basic research. Legionella Legionella are a genus of pathogenic gram-negative bacteria found in freshwater and aerated...

Eradicating Malaria: The Role of Diagnostics

Malaria has been a major health threat throughout human history and is still a leading cause of death in many tropical and subtropical countries around the globe. Thanks to renewed efforts over the past two decades, malaria prevalence has reduced by half, making...

The Immune Evasion Strategies of Lassa Fever Virus

In this blog, we outline the molecular pathogenesis of Lassa viral haemorrhagic fever and introduce our extended range of Lassa Fever virus antigens and antibodies.Viral haemorrhagic fevers Viral haemorrhagic fevers (VHF) are a diverse group of viral illnesses that...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

4 + 6 =

Live Customer Feedback

Join our mailing list

* indicates required