0 Items
Select Page

HIV

HIV continues to be a major global public health issue, having claimed more than 35 million lives as of 2018. In 2017, 940 000 people died from HIV-related causes globally. There were approximately 36.9 million people living with HIV by the end of 2017, with 1.8 million people becoming newly infected in 2017 globally (WHO).

To support continuing research into HIV, The Native Antigen Company have developed a panel of recombinant gp120 proteins for different strains of HIV.

HIV Background

Human immunodeficiency virus (HIV) is an enveloped, single-stranded virus and member of the genus Lentivirus and Retroviridae family. Two types of HIV are recognised: HIV-type 1, responsible for most HIV infections globally and HIV-type 2, which is restricted to some regions of Africa.

HIV-1 viruses may be further divided into groups M, N, O and P. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Within the M group of HIV-1 there are a number of genetically distinct sub-types (known as clades). Different subtypes can also combine genetic material to form a hybrid virus or ‘circulating recombinant form’ (CRF). Subtype B is the most common in the Americas and Western Europe, whilst subtype C is the predominant form in Africa and India. Most research has been carried out on subtype B, although it accounts for only 12% of infections worldwide.

Human Immunodeficiency Virus is transmitted from person-to-person through contact with contaminated blood, seminal fluid, vaginal secretions, rectal fluids and breast milk. HIV particles can be detected in the blood 10-12 days after infection. Characteristics of HIV infection vary and may include flu-like symptoms, fever, arthralgia, lymphadenopathy, pharyngitis, weight loss and general malaise. An asymptomatic phase follows the acute phase of HIV infection. During this phase, the effects of HIV infection continue resulting in a decrease of CD4+ T-cell populations and impairment of the immune system. Seroconversion is estimated to occur between 3-5 weeks after infection. (Fanales-Belasio, E. et al).

HIV targets cells of the host’s immune system, including circulating T-cells, precursor T-cells in the bone marrow and thymus, dendritic cells, macrophages and monocytes, eosinophils and microglia cells of the central nervous system. The HIV gp120 envelope glycoprotein enables the virus to enter host target cells by interacting with CD4 – a cell surface glycoprotein. Chemokine receptors have also been identified, primarily CXCR4 and CCR5, which act as co-receptors for viral entry (Wilen, C.B. et al).

In the absence of treatment, HIV infection can progress further, resulting in a decrease in T-cell numbers and the development of Acquired Immunodeficiency Syndrome (AIDS). AIDS renders an individual susceptible to a plethora of opportunistic infections, including Microcystis carinii, Candida albicans, Cytomegalovirus and Herpes zoster, which are life-threatening to those infected. (Fanales-Belasio, E. et al). Effective antiretroviral therapy (ART) is widely available for the treatment of HIV infection. In 2016, approximately 19.5 million people worldwide were reported to be receiving ART, resulting in significant reductions in mortality, in both children and adults (UNAIDS factsheet).

HIV Antigens

The Native Antigen Company offers a panel of recombinant HIV gp120 proteins, expressed in our mammalian cell system to ensure correct folding and glycosylation. Our HIV antigens are available from different HIV-1 sub-types, allowing researchers to study the differing behaviours of the sub-types and associated activity of gp120.

Questions?

Check out our FAQ section for answers to the most frequently asked questions about our website and company.

Using Adenoviruses to Fight Cancer

In the second of a 2-part series, we discuss how adenoviruses are being developed to treat cancer and some of the hurdles these platforms face from our own immune systems. Curing cancer is one of the biggest challenges of the 21st century. Our knowledge of cancer’s...

New Immunofluorescence Data for our CMV, Yellow Fever and Ebola Antibodies

In September 2018 The Native Antigen Company and Virology Research Services (VRS) were awarded the Medical Research Council (Proximity to Discovery Award for Knowledge Exchange) to test a large panel of our viral antibodies in immunofluorescence applications. This...

Why are ticks such good vectors of pathogens?

In this blog, Professor Patricia Nuttall discusses what makes ticks such effective vectors of pathogens and how we might prevent the spread of tick-borne diseases. About Patrica Nuttall Pat Nuttall is Emeritus Professor of Arbovirology in the Department of Zoology,...

Dengue in 2019

What's going on with dengue? Dengue virus (DENV) has been in the news a lot recently. The number of reported cases continues to climb year-on-year and 2019 has been especially bad. Rio de Janeiro has seen a 45% increase in dengue cases in the first two months of 2019...

Zika Prevalence in Suriname – an insight into assay cross-reactivity

A recent study published by Langerak et al tested for the seroprevalence of Zika virus in Suriname populations and evaluated the comparative effectiveness of using a commercial ELISA and a standard Virus Neutralisation Assay. Here we discuss the study, its results,...

Get in Touch

We sometimes send exclusive information and offers to our customers - please let us know if you are happy to receive these

15 + 15 =

Live Customer Feedback